Skip to main content
Log in

Distinct detection and discrimination sensitivities in visual processing of real versus unreal optic flow

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

We examined the intricate mechanisms underlying visual processing of complex motion stimuli by measuring the detection sensitivity to contraction and expansion patterns and the discrimination sensitivity to the location of the center of motion (CoM) in various real and unreal optic flow stimuli. We conducted two experiments (N = 20 each) and compared responses to both "real" optic flow stimuli containing information about self-movement in a three-dimensional scene and "unreal" optic flow stimuli lacking such information. We found that detection sensitivity to contraction surpassed that to expansion patterns for unreal optic flow stimuli, whereas this trend was reversed for real optic flow stimuli. Furthermore, while discrimination sensitivity to the CoM location was not affected by stimulus duration for unreal optic flow stimuli, it showed a significant improvement when stimulus duration increased from 100 to 400 ms for real optic flow stimuli. These findings provide compelling evidence that the visual system employs distinct processing approaches for real versus unreal optic flow even when they are perfectly matched for two-dimensional global features and local motion signals. These differences reveal influences of self-movement in natural environments, enabling the visual system to uniquely process stimuli with significant survival implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data transparency and code availability

The original study materials, anonymized primary and processed research data, and original analysis scripts of this study are available via the Open Science Framework at: https://osf.io/jcnh2/?view_only=ee71af5d05dc4357abcc35265b1a3169

Notes

  1. Also known as focus of expansion (FoE) for forward translational self-movement.

References

  • Alliston, E. L. (2004). Glass patterns and random dot motion: Parallel and hierarchical visual processing [Doctoral dissertation]. New York University.

    Google Scholar 

  • Bremmer, F., Duhamel, J.-R., Ben Hamed, S., & Graf, W. (2002a). Heading encoding in the macaque ventral intraparietal area (VIP). European Journal of Neuroscience, 16(8), 1554–1568.

    Article  PubMed  Google Scholar 

  • Bremmer, F., Klam, F., Duhamel, J.-R., Ben Hamed, S., & Graf, W. (2002b). Visual–vestibular interactive responses in the macaque ventral intraparietal area (VIP). European Journal of Neuroscience, 16(8), 1569–1586.

    Article  PubMed  Google Scholar 

  • Bruss, A. R., & Horn, B. K. (1983). Passive navigation. Computer Vision, Graphics, and Image Processing, 21(1), 3–20.

    Article  Google Scholar 

  • Burr, D. C. (1981). Temporal summation of moving images by the human visual system. Proceedings of the Royal Society of London. Series B. Biological Sciences, 211(1184), 321–339. https://doi.org/10.1098/rspb.1981.0010

  • Burr, D. C., Morrone, M. C., & Vaina, L. M. (1998). Large receptive fields for optic flow detection in humans. Vision Research, 38(12), 1731–1743.

    Article  PubMed  Google Scholar 

  • Chow, H. M., Knöll, J., Madsen, M., & Spering, M. (2021). Look where you go: Characterizing eye movements toward optic flow. Journal of Vision, 21(3), 19–19. https://doi.org/10.1167/jov.21.3.19

    Article  PubMed  PubMed Central  Google Scholar 

  • Crowell, J. A., Royden, C. S., Banks, M. S., Swenson, K. H., & Sekuler, A. B. (1990). Optic flow and heading judgements. Investigative Ophthalmology & Visual Science, 31(Suppl.), 522.

    Google Scholar 

  • Dukelow, S. P., DeSouza, J. F., Culham, J. C., van den Berg, A. V., Menon, R. S., & Vilis, T. (2001). Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. Journal of Neurophysiology, 86(4), 1991–2000.

    Article  PubMed  Google Scholar 

  • Edwards, M., & Badcock, D. R. (1993). Asymmetries in the sensitivity to motion in depth: A centripetal bias. Perception, 22(9), 1013–1023.

    Article  PubMed  Google Scholar 

  • Edwards, M., & Ibbotson, M. R. (2007). Relative sensitivities to large-field optic-flow patterns varying in direction and speed. Perception, 36(1), 113–124.

    Article  PubMed  Google Scholar 

  • Ehrlich, S. M., Beck, D. M., Crowell, J. A., Freeman, T. C. A., & Banks, M. S. (1998). Depth information and perceived self-motion during simulated gaze rotations. Vision Research, 38(20), 3129–3145. https://doi.org/10.1016/S0042-6989(97)00427-6

    Article  PubMed  Google Scholar 

  • Fujimoto, K., & Ashida, H. (2019). Larger head displacement to optic flow presented in the lower visual field. I-Perception. https://doi.org/10.1177/2041669519886903

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson, J. J. (1950). The perception of the visual world (pp. xii–242). Houghton Mifflin.

    Google Scholar 

  • Gilmore, R. O., Hou, C., Pettet, M. W., & Norcia, A. M. (2007). Development of cortical responses to optic flow. Visual Neuroscience, 24(6), Article 6. https://doi.org/10.1017/S0952523807070769

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25.

    Article  PubMed  Google Scholar 

  • Greenlee, M. W. (2000). Human cortical areas underlying the perception of optic flow: Brain imaging studies. International Review of Neurobiology, 44, 269–292.

    Article  PubMed  Google Scholar 

  • Heeger, D. J., & Jepson, A. D. (1992). Subspace methods for recovering rigid motion I: Algorithm and implementation. International Journal of Computer Vision, 7, 95–117.

    Article  Google Scholar 

  • Hooge, I. T. C., Beintema, J. A., & Van den Berg, A. V. (1999). Visual search of heading direction. Experimental Brain Research, 129, 615–628.

    Article  PubMed  Google Scholar 

  • Iliescu, B. F. (2022). Learning by Exposure in the Visual System. Brain Sciences, 12(4), 508.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knöll, J., Pillow, J. W., & Huk, A. C. (2018). Lawful tracking of visual motion in humans, macaques, and marmosets in a naturalistic, continuous, and untrained behavioral context. Proceedings of the National Academy of Sciences, 115(44), E10486–E10494. https://doi.org/10.1073/pnas.1807192115

    Article  Google Scholar 

  • Koenderink, J. J. (1986). Optic flow. Vision Research, 26(1), 161–179. https://doi.org/10.1016/0042-6989(86)90078-7

    Article  PubMed  Google Scholar 

  • Koenderink, J. J., & van Doorn, A. J. (1987). Facts on optic flow. Biological Cybernetics, 56(4), 247–254.

    Article  PubMed  Google Scholar 

  • Koyama, S., Sasaki, Y., Andersen, G. J., Tootell, R. B., Matsuura, M., & Watanabe, T. (2005). Separate processing of different global-motion structures in visual cortex is revealed by FMRI. Current Biology, 15(22), 2027–2032.

    Article  PubMed  Google Scholar 

  • Kravitz, D. J., Saleem, K. S., Baker, C. I., & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews Neuroscience, 12(4), 217–230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Layton, O. W., & Fajen, B. R. (2016). The temporal dynamics of heading perception in the presence of moving objects. Journal of Neurophysiology, 115(1), 286–300.

    Article  PubMed  Google Scholar 

  • Li, L., & Warren, W. H. (2000). Perception of heading during rotation: Sufficiency of dense motion parallax and reference objects. Vision Research, 40(28), 3873–3894. https://doi.org/10.1016/S0042-6989(00)00196-6

    Article  PubMed  Google Scholar 

  • Li, L., Peli, E., & Warren, W. H. (2002). Heading perception in patients with advanced retinitis pigmentosa. Optometry and Vision Science, 79(9), 581–589.

    Article  PubMed  Google Scholar 

  • Li, L., Chen, J., & Peng, X. (2009). Influence of visual path information on human heading perception during rotation. Journal of Vision, 9(3), 29–29. https://doi.org/10.1167/9.3.29

    Article  Google Scholar 

  • Longuet-Higgins, H. C., & Prazdny, K. (1980). The interpretation of a moving retinal image. Proceedings of the Royal Society of London Series B Biological Sciences, 208(1173), 385–397.

    PubMed  Google Scholar 

  • Matthis, J. S., Muller, K. S., Bonnen, K. L., & Hayhoe, M. M. (2022). Retinal optic flow during natural locomotion. PLOS Computational Biology, 18(2), e1009575. https://doi.org/10.1371/journal.pcbi.1009575

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417.

    Article  Google Scholar 

  • Morrone, M. C., Burr, D. C., Di Pietro, S., & Stefanelli, M.-A. (1999). Cardinal directions for visual optic flow. Current Biology, 9(14), 763–766.

    Article  PubMed  Google Scholar 

  • Muller, K. S., Matthis, J., Bonnen, K., Cormack, L. K., Huk, A. C., & Hayhoe, M. (2023). Retinal motion statistics during natural locomotion. eLife, 12, e82410. https://doi.org/10.7554/eLife.82410

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers, B. (2021). Optic Flow: Perceiving and Acting in a 3-D World. I-Perception, 12(1), 2041669520987257. https://doi.org/10.1177/2041669520987257

    Article  PubMed  PubMed Central  Google Scholar 

  • Royden, C. S., Crowell, J. A., & Banks, M. S. (1994). Estimating heading during eye movements. Vision Research, 34(23), 3197–3214. https://doi.org/10.1016/0042-6989(94)90084-1

    Article  PubMed  Google Scholar 

  • Rutschmann, R. M., Schrauf, M., & Greenlee, M. W. (2000). Brain activation during dichoptic presentation of optic flow stimuli. Experimental Brain Research, 134, 533–537.

    Article  PubMed  Google Scholar 

  • Shirai, N., Birtles, D., Wattam-Bell, J., Yamaguchi, M. K., Kanazawa, S., Atkinson, J., & Braddick, O. (2009). Asymmetrical cortical processing of radial expansion contraction in infants and adults. Developmental Science, 12(6), 946–955. https://doi.org/10.1111/j.1467-7687.2009.00839.x

    Article  PubMed  Google Scholar 

  • Smith, A. T., Greenlee, M. W., Singh, K. D., Kraemer, F. M., & Hennig, J. (1998). The processing of first-and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). Journal of Neuroscience, 18(10), 3816–3830.

    Article  PubMed  Google Scholar 

  • Smith, A. T., Wall, M. B., Williams, A. L., & Singh, K. D. (2006). Sensitivity to optic flow in human cortical areas MT and MST. European Journal of Neuroscience, 23(2), 561–569.

    Article  PubMed  Google Scholar 

  • Smith, A. T., Beer, A. L., Furlan, M., & Mars, R. B. (2018). Connectivity of the cingulate sulcus visual area (CSv) in the human cerebral cortex. Cerebral Cortex, 28(2), 713–725.

    PubMed  Google Scholar 

  • Strong, S. L., Silson, E. H., Gouws, A. D., Morland, A. B., & McKeefry, D. J. (2017). Differential processing of the direction and focus of expansion of optic flow stimuli in areas MST and V3A of the human visual cortex. Journal of Neurophysiology, 117(6), 2209–2217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Todd, J. T. (1995). Chapter 6—The Visual Perception of Three- Dimensional Structure from Motion. In W. Epstein & S. Rogers (Eds.), Perception of Space and Motion (pp. 201–226). Academic Press. https://doi.org/10.1016/B978-012240530-3/50008-0

    Chapter  Google Scholar 

  • Van den Berg, A. V. (1992). Robustness of perception of heading from optic flow. Vision Research, 32(7), 1285–1296.

    Article  PubMed  Google Scholar 

  • Wall, M. B., & Smith, A. T. (2008). The representation of egomotion in the human brain. Current Biology, 18(3), 191–194.

    Article  PubMed  Google Scholar 

  • Wall, M. B., Lingnau, A., Ashida, H., & Smith, A. T. (2008). Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. European Journal of Neuroscience, 27(10), 2747–2757.

    Article  PubMed  Google Scholar 

  • Warren, R. (1976). The perception of egomotion. Journal of Experimental Psychology: Human Perception and Performance, 2(3), 448–456. https://doi.org/10.1037/0096-1523.2.3.448

    Article  PubMed  Google Scholar 

  • Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358–389. https://doi.org/10.1037/0033-295X.113.2.358

    Article  PubMed  Google Scholar 

  • Warren, W. H., Jr., & Hannon, D. J. (1988). Direction of self-motion is perceived from optical flow. Nature, 336(6195), 162–163.

    Article  Google Scholar 

  • Warren, W. H., Morris, M. W., & Kalish, M. (1988). Perception of translational heading from optical flow. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 646.

    PubMed  Google Scholar 

  • Warren, W. H., Blackwell, A. W., Kurtz, K. J., Hatsopoulos, N. G., & Kalish, M. L. (1991). On the sufficiency of the velocity field for perception of heading. Biological Cybernetics, 65, 311–320.

    Article  PubMed  Google Scholar 

  • Watanabe, T., Nanez, J. E., & Sasaki, Y. (2001). Perceptual learning without perception. Nature, 413(6858), 844–848.

    Article  PubMed  Google Scholar 

  • Watson, A. B. (1979). Probability summation over time. Vision Research, 19(5), 515–522.

    Article  PubMed  Google Scholar 

  • Watson, A. B., & Turano, K. (1995). The optimal motion stimulus. Vision Research, 35(3), 325–336. https://doi.org/10.1016/0042-6989(94)00182-L

    Article  PubMed  Google Scholar 

  • Zhang, J.-Y., Zhang, G.-L., Xiao, L.-Q., Klein, S. A., Levi, D. M., & Yu, C. (2010). Rule-based learning explains visual perceptual learning and its specificity and transfer. Journal of Neuroscience, 30(37), 12323–12328.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Zhoukuidong Shan for his assistance with programming and Lee Stone for his helpful comments on a previous draft of the paper. We also thank two anonymous reviewers for their helpful comments, which have significantly improved the quality and clarity of our paper.

Funding

This study was supported by research grants from the National Natural Science Foundation of China (32161133009, 32071041), Shanghai Science and Technology Committee (20ZR1439500, 19JC1410101), China Ministry of Education (ECNU 111 Project, Base B1601), and NYU Shanghai (the major grant seed fund and the boost fund).

Author information

Authors and Affiliations

Authors

Contributions

LL and SK conceptualized the experiments. LL designed the experiments. XS ran the experiments. XS and LL analyzed the data. LL and XS wrote the first draft and revised the paper. We declare no competing financial interests.

Corresponding author

Correspondence to Li Li.

Ethics declarations

Conflicts of interest

The authors declared that there were no conflicts of interest with respect to the authorship or the publication of this article.

Ethics approval

This research complies with the Declaration of Helsinki (2023), aside from the requirement to preregister human subjects research, and received approval from the Institutional Review Board at New York University Shanghai (ID: 0062016).

Consent to participate

We obtained written informed consent from all participants before the commencement of each experiment in this study. The consent form was approved by the Institutional Review Board at New York University Shanghai.

Consent for publication

All authors have read and approved the final manuscript and consent to its publication.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 34 KB)

Supplementary file2 (MP4 38 KB)

Supplementary file3 (MP4 36 KB)

Supplementary file4 (MP4 39 KB)

Supplementary file5 (MP4 33 KB)

Supplementary file6 (MP4 35 KB)

Supplementary file7 (MP4 34 KB)

Supplementary file8 (DOCX 173 KB)

Supplementary file9 (MP4 37 KB)

Supplementary file10 (MP4 29 KB)

Supplementary file11 (MP4 77 KB)

Supplementary file12 (MP4 75 KB)

Supplementary file13 (MP4 100 KB)

Supplementary file14 (MP4 37 KB)

Supplementary file15 (MP4 37 KB)

Supplementary file16 (MP4 39 KB)

Supplementary file17 (MP4 37 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Shen, X. & Kuai, S. Distinct detection and discrimination sensitivities in visual processing of real versus unreal optic flow. Psychon Bull Rev 32, 1540–1550 (2025). https://doi.org/10.3758/s13423-024-02616-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.3758/s13423-024-02616-y

Keywords