Skip to main content

Advertisement

Log in

Toward an integrative account of internal and external determinants of event segmentation

  • Theoretical/Review
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Our daily experiences unfold continuously, but we remember them as a series of discrete events through a process called event segmentation. Prominent theories of event segmentation suggest that event boundaries in memory are triggered by significant shifts in the external environment, such as a change in one’s physical surroundings. In this review, we argue for a fundamental extension of this research field to also encompass internal state changes as playing a key role in structuring event memory. Accordingly, we propose an expanded taxonomy of event boundary-triggering processes, and review behavioral and neuroscience research on internal state changes in three core domains: affective states, goal states, and motivational states. Finally, we evaluate how well current theoretical frameworks can accommodate the unique and interactive contributions of internal states to event memory. We conclude that a theoretical perspective on event memory that integrates both external environment and internal state changes allows for a more complete understanding of how the brain structures experiences, with important implications for future research in cognitive and clinical neuroscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507–517.

    PubMed  Google Scholar 

  • Bailey, H. R., Kurby, C. A., Sargent, J. Q., & Zacks, J. M. (2017). Attentional focus affects how events are segmented and updated in narrative reading. Memory & Cognition, 45(6), 940–955.

    Google Scholar 

  • Baird, B., Smallwood, J., Lutz, A., & Schooler, J. W. (2014). The decoupled mind: Mind-wandering disrupts cortical phase-locking to perceptual events. Journal of Cognitive Neuroscience, 26(11), 2596–2607.

    PubMed  Google Scholar 

  • Baldassano, C., Chen, J., Zadbood, A., Pillow, J. W., Hasson, U., & Norman, K. A. (2017). Discovering event structure in continuous narrative perception and memory. Neuron, 95(3), 709–721.e5.

    PubMed  PubMed Central  Google Scholar 

  • Ben-Yakov, A., & Dudai, Y. (2011). Constructing realistic engrams: Poststimulus activity of hippocampus and dorsal striatum predicts subsequent episodic memory. Journal of Neuroscience, 31(24), 9032–9042.

    PubMed  Google Scholar 

  • Ben-Yakov, A., & Henson, R. N. (2018). The hippocampal film editor: Sensitivity and specificity to event boundaries in continuous experience. The Journal of Neuroscience, 38(47), 10057–10068.

    PubMed  PubMed Central  Google Scholar 

  • Bilkey, D. K., & Jensen, C. (2021). Neural markers of event boundaries. Topics in Cognitive Science, 13(1), 128–141.

    PubMed  Google Scholar 

  • Block, R. A., & Zakay, D. (1997). Prospective and retrospective duration judgments: A meta-analytic review. Psychonomic Bulletin & Review, 4(2), 184–197.

    Google Scholar 

  • Boltz, M. (1992). Temporal accent structure and the remembering of filmed narratives. Journal of Experimental Psychology. Human Perception and Performance, 18(1), 90–105.

    PubMed  Google Scholar 

  • Bonasia, K., Blommesteyn, J., & Moscovitch, M. (2016). Memory and navigation: Compression of space varies with route length and turns. Hippocampus, 26(1), 9–12.

    PubMed  Google Scholar 

  • Brunec, I. K., Bellana, B., Ozubko, J. D., Man, V., Robin, J., Liu, Z.-X., Grady, C., Rosenbaum, R. S., Winocur, G., Barense, M. D., & Moscovitch, M. (2018). Multiple scales of representation along the hippocampal anteroposterior Axis in humans. Current Biology, 28(13), 2129–2135.e6.

    PubMed  Google Scholar 

  • Brunec, I. K., Ozubko, J. D., Ander, T., Guo, R., Moscovitch, M., & Barense, M. D. (2020). Turns during navigation act as boundaries that enhance spatial memory and expand time estimation. Neuropsychologia, 141, 107437. https://doi.org/10.1016/j.neuropsychologia.2020.107437

    Article  PubMed  Google Scholar 

  • Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17(11), 718–731.

    PubMed  Google Scholar 

  • Clewett, D., & Davachi, L. (2017). The ebb and flow of experience determines the temporal structure of memory. Current Opinion in Behavioral Sciences, 17, 186–193.

    PubMed  PubMed Central  Google Scholar 

  • Clewett, D., & Davachi, L. (2021). Emotional arousal ripples across time to bind subsequent episodes in memory. PsyArXiv. https://doi.org/10.31234/osf.io/ne5vs

  • Clewett, D., DuBrow, S., & Davachi, L. (2019). Transcending time in the brain: How event memories are constructed from experience. Hippocampus, 29(3), 162–183.

    PubMed  PubMed Central  Google Scholar 

  • Clewett, D., Gasser, C., & Davachi, L. (2020). Pupil-linked arousal signals track the temporal organization of events in memory. Nature Communications, 11(1), 1.

    Google Scholar 

  • Clewett, D., & Murty, V. P. (2019). Echoes of emotions past: How neuromodulators determine what we recollect. ENeuro, 6(2), ENEURO.0108-18.2019.

    PubMed  PubMed Central  Google Scholar 

  • Cohn-Sheehy, B. I., & Ranganath, C. (2017). Time regained: How the human brain constructs memory for time. Current Opinion in Behavioral Sciences, 17, 169–177.

    PubMed  PubMed Central  Google Scholar 

  • Decker, A. L., & Duncan, K. (2020). Acetylcholine and the complex interdependence of memory and attention. Current Opinion in Behavioral Sciences, 32, 21–28.

    Google Scholar 

  • Dev, D. K., Wardell, V., Checknita, K., Te, A., Petrucci, A., Madan, C., & Palombo, D. (2021). Negative emotion enhances memory for the sequential unfolding of a naturalistic experience. PsyArXiv. https://doi.org/10.31234/osf.io/j2wmz

  • Dickerson, K. C., & Adcock, R. A. (2018). Motivation and memory. In J. T. Wixted (Ed.), Steven’s Handook of experimental psychology and cognitive neuroscience (4th ed.). John Wiley & Sons, Inc..

    Google Scholar 

  • DuBrow, S., & Davachi, L. (2013). The influence of context boundaries on memory for the sequential order of events. Journal of Experimental Psychology. General, 142(4), 1277–1286.

    PubMed  PubMed Central  Google Scholar 

  • DuBrow, S., & Davachi, L. (2014). Temporal memory is shaped by encoding stability and intervening item reactivation. Journal of Neuroscience, 34(42), 13998–14005.

    PubMed  Google Scholar 

  • DuBrow, S., & Davachi, L. (2016). Temporal binding within and across events. Neurobiology of Learning and Memory, 134, 107–114.

    PubMed  PubMed Central  Google Scholar 

  • DuBrow, S., Rouhani, N., Niv, Y., & Norman, K. A. (2017). Does mental context drift or shift? Current Opinion in Behavioral Sciences, 17, 141–146.

    PubMed  PubMed Central  Google Scholar 

  • Ezzyat, Y., & Davachi, L. (2011). What constitutes an episode in episodic memory? Psychological Science, 22(2), 243–252.

    PubMed  Google Scholar 

  • Ezzyat, Y., & Davachi, L. (2014). Similarity breeds proximity: Pattern similarity within and across contexts is related to later mnemonic judgments of temporal proximity. Neuron, 81(5), 1179–1189.

    PubMed  PubMed Central  Google Scholar 

  • Ezzyat, Y., & Davachi, L. (2021). Neural evidence for representational persistence within events. The Journal of Neuroscience, JN-RM-0073-21. https://doi.org/10.1523/JNEUROSCI.0073-21.2021

  • Faber, M., & Gennari, S. P. (2015). In search of lost time: Reconstructing the unfolding of events from memory. Cognition, 143, 193–202.

    PubMed  Google Scholar 

  • Fredrickson, B. L., & Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition and Emotion, 19(3), 313–332.

    PubMed  Google Scholar 

  • Gable, P. A., & Harmon-Jones, E. (2008). Approach-motivated positive affect reduces breadth of attention. Psychological Science, 19(5), 476–482.

    PubMed  Google Scholar 

  • Gard, D. E., Cooper, S., Fisher, M., Genevsky, A., Mikels, J. A., & Vinogradov, S. (2011). Evidence for an emotion maintenance deficit in schizophrenia. Psychiatry Research, 187(1), 24–29.

    PubMed  PubMed Central  Google Scholar 

  • Geerligs, L., Gözükara, D., Oetringer, D., Campbell, K. L., van Gerven, M., & Güçlü, U. (2022). A partially nested cortical hierarchy of neural states underlies event segmentation in the human brain. ELife, 11, e77430. https://doi.org/10.7554/eLife.77430

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84(2), 486–496.

    PubMed  PubMed Central  Google Scholar 

  • Gruber, M. J., Ritchey, M., Wang, S.-F., Doss, M. K., & Ranganath, C. (2016). Post-learning hippocampal dynamics promote preferential retention of rewarding events. Neuron, 89(5), 1110–1120.

    PubMed  PubMed Central  Google Scholar 

  • Hard, B. M., Meyer, M., & Baldwin, D. (2019). Attention reorganizes as structure is detected in dynamic action. Memory & Cognition, 47(1), 17–32.

    Google Scholar 

  • Hard, B. M., Tversky, B., & Lang, D. S. (2006). Making sense of abstract events: Building event schemas. Memory & Cognition, 34(6), 1221–1235.

    Google Scholar 

  • Harley, C. W. (2007). Norepinephrine and the dentate gyrus. In H. E. Scharfman (Ed.), Progress in brain research (Vol. 163, pp. 299–318). Elsevier.

    Google Scholar 

  • Harmon-Jones, E., Gable, P. A., & Price, T. F. (2012). The influence of affective states varying in motivational intensity on cognitive scope. Frontiers in Integrative Neuroscience, 6. https://doi.org/10.3389/fnint.2012.00073

  • Heusser, A. C., Ezzyat, Y., Shiff, I., & Davachi, L. (2018). Perceptual boundaries cause mnemonic trade-offs between local boundary processing and across-trial associative binding. Journal of Experimental Psychology. Learning, Memory, and Cognition, 44(7), 1075–1090.

    PubMed  PubMed Central  Google Scholar 

  • Horner, A. J., Bisby, J. A., Wang, A., Bogus, K., & Burgess, N. (2016). The role of spatial boundaries in shaping long-term event representations. Cognition, 154, 151–164.

    PubMed  PubMed Central  Google Scholar 

  • Horwath, E. A., Rouhani, N., DuBrow, S., & Murty, V. P. (2022). Value restructures the organization of free recall. Cognition, 231(2023), 105315. https://doi.org/10.1016/j.cognition.2022.105315

    Article  PubMed  PubMed Central  Google Scholar 

  • Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46(3), 269–299.

    Google Scholar 

  • Hsieh, L.-T., Gruber, M. J., Jenkins, L. J., & Ranganath, C. (2014). Hippocampal activity patterns carry information about objects in temporal context. Neuron, 81(5), 1165–1178.

    PubMed  PubMed Central  Google Scholar 

  • Huntjens, R. J. C., Wessel, I., Postma, A., van Wees-Cieraad, R., & de Jong, P. J. (2015). Binding temporal context in memory: Impact of emotional arousal as a function of state anxiety and state dissociation. Journal of Nervous & Mental Disease, 203(7), 545–550.

    Google Scholar 

  • Jayakumar, M., Balusu, C., & Aly, M. (2022). Attentional fluctuations and the temporal organization of memory. PsyArXiv. https://doi.org/10.31234/osf.io/j32bn

  • Jeunehomme, O., & D’Argembeau, A. (2018). Event segmentation and the temporal compression of experience in episodic memory. Psychological Research, 84(2), 481–490.

    PubMed  Google Scholar 

  • Jeunehomme, O., Folville, A., Stawarczyk, D., der Linden, M. V., & D’Argembeau, A. (2018). Temporal compression in episodic memory for real-life events. Memory, 26(6), 759–770.

    PubMed  Google Scholar 

  • Johnson, L. W., & MacKay, D. G. (2019). Relations between emotion, memory encoding, and time perception. Cognition and Emotion, 33(2), 185–196.

    PubMed  Google Scholar 

  • Kennedy, P. J., & Shapiro, M. L. (2004). Retrieving memories via internal context requires the hippocampus. Journal of Neuroscience, 24(31), 6979–6985.

    PubMed  Google Scholar 

  • Kennedy, P. J., & Shapiro, M. L. (2009). Motivational states activate distinct hippocampal representations to guide goal-directed behaviors. Proceedings of the National Academy of Sciences, 106(26), 10805–10810.

    Google Scholar 

  • Kurby, C. A., & Zacks, J. M. (2008). Segmentation in the perception and memory of events. Trends in Cognitive Sciences, 12(2), 72–79.

    PubMed  PubMed Central  Google Scholar 

  • Lake, J. I., LaBar, K. S., & Meck, W. H. (2016). Emotional modulation of interval timing and time perception. Neuroscience & Biobehavioral Reviews, 64, 403–420.

    Google Scholar 

  • Lee, H., & Chen, J. (2022). A generalized cortical activity pattern at internally generated mental context boundaries during unguided narrative recall. ELife, 11, e73693. https://doi.org/10.7554/eLife.73693

    Article  PubMed  PubMed Central  Google Scholar 

  • Long, N. M., Danoff, M. S., & Kahana, M. J. (2015). Recall dynamics reveal the retrieval of emotional context. Psychonomic Bulletin & Review, 22(5), 1328–1333.

    Google Scholar 

  • Lositsky, O., Chen, J., Toker, D., Honey, C. J., Shvartsman, M., Poppenk, J. L., Hasson, U., & Norman, K. A. (2016). Neural pattern change during encoding of a narrative predicts retrospective duration estimates. ELife, 5, e16070. https://doi.org/10.7554/eLife.16070

    Article  PubMed  PubMed Central  Google Scholar 

  • Madan, C. R., Scott, S. M. E., & Kensinger, E. A. (2019). Positive emotion enhances association-memory. Emotion, 19(4), 733–740.

    PubMed  Google Scholar 

  • Manning, J. R., Hulbert, J. C., Williams, J., Piloto, L., Sahakyan, L., & Norman, K. A. (2016). A neural signature of contextually mediated intentional forgetting. Psychonomic Bulletin & Review, 23(5), 1534–1542.

    Google Scholar 

  • Mather, M., Clewett, D., Sakaki, M., & Harley, C. W. (2016). Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory. Behavioral and Brain Sciences, 39, e200–e200.

    PubMed  Google Scholar 

  • Mather, M., & Sutherland, M. R. (2011). Arousal-biased competition in perception and memory. Perspectives on Psychological Science : A Journal of the Association for Psychological Science, 6(2), 114–133.

    PubMed  Google Scholar 

  • McClay, M., Sachs, M., & Clewett, D. (2022). Dynamic music-induced emotions shape the episodic structure of memory [preprint]. PsyArXiv. 10.31234/osf.io/8hpwy.

  • McKenzie, S., Frank, A. J., Kinsky, N. R., Porter, B., Rivière, P. D., & Eichenbaum, H. (2014). Hippocampal representation of related and opposing memories develop within distinct. Hierarchically Organized Neural Schemas. Neuron, 83(1), 202–215.

    PubMed  Google Scholar 

  • Mildner, J. N., & Tamir, D. I. (2019). Spontaneous thought as an unconstrained memory process. Trends in Neurosciences, 42(11), 763–777.

    PubMed  Google Scholar 

  • Monchi, O., Petrides, M., Doyon, J., Postuma, R. B., Worsley, K., & Dagher, A. (2004). Neural bases of set-shifting deficits in Parkinson’s disease. Journal of Neuroscience, 24(3), 702–710.

    PubMed  Google Scholar 

  • Murty, V. P., & Adcock, R. A. (2014). Enriched encoding: Reward motivation organizes cortical networks for hippocampal detection of unexpected events. Cerebral Cortex, 24(8), 2160–2168.

    PubMed  Google Scholar 

  • Murty, V. P., & Adcock, R. A. (2017). Distinct medial temporal lobe network states as neural contexts for motivated memory formation. In D. E. Hannula & M. C. Duff (Eds.), The hippocampus from cells to systems: Structure, connectivity, and functional contributions to memory and flexible cognition (pp. 467–501). Springer International Publishing. https://doi.org/10.1007/978-3-319-50406-3_15

    Chapter  Google Scholar 

  • Murty, V. P., LaBar, K. S., Hamilton, D. A., & Adcock, R. A. (2011). Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory. Learning & Memory, 18(11), 712–717.

    Google Scholar 

  • Murty, V. P., Tompary, A., Adcock, R. A., & Davachi, L. (2017). Selectivity in Postencoding connectivity with high-level visual cortex is associated with reward-motivated memory. The Journal of Neuroscience, 37(3), 537–545.

    PubMed  PubMed Central  Google Scholar 

  • O’Callaghan, C., Walpola, I. C., & Shine, J. M. (2021). Neuromodulation of the mind-wandering brain state: The interaction between neuromodulatory tone, sharp wave-ripples and spontaneous thought. Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1817), 20190699.

    Google Scholar 

  • Palombo, D. J., & Cocquyt, C. (2020). Emotion in context: Remembering when. Trends in Cognitive Sciences, 24(9), 687–690.

    PubMed  Google Scholar 

  • Petrucci, A. S., & Palombo, D. J. (2021). A matter of time: How does emotion influence temporal aspects of remembering? Cognition and Emotion, 35(8), 1499–1515.

    PubMed  Google Scholar 

  • Pezzulo, G., Kemere, C., & van der Meer, M. A. A. (2017). Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition: Hippocampal sequences and future-oriented cognition. Annals of the New York Academy of Sciences, 1396(1), 144–165.

    PubMed  Google Scholar 

  • Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009a). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116(1), 129–156.

    PubMed  PubMed Central  Google Scholar 

  • Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009b). Task context and organization in free recall. Neuropsychologia, 47(11), 2158–2163.

    PubMed  PubMed Central  Google Scholar 

  • Poppe, A. B., Barch, D. M., Carter, C. S., Gold, J. M., Ragland, J. D., Silverstein, S. M., & MacDonald, A. W., III. (2016). Reduced Frontoparietal activity in schizophrenia is linked to a specific deficit in goal maintenance: A multisite functional imaging study. Schizophrenia Bulletin, 42(5), 1149–1157.

    PubMed  PubMed Central  Google Scholar 

  • Poynter, W. D. (1983). Duration judgment and the segmentation of experience. Memory & Cognition, 11(1), 77–82.

    Google Scholar 

  • Radvansky, G. A. (2012). Across the event horizon. Current Directions in Psychological Science, 21(4), 269–272.

    Google Scholar 

  • Radvansky, G. A., & Copeland, D. E. (2006). Walking through doorways causes forgetting: Situation models and experienced space. Memory & Cognition, 34(5), 1150–1156.

    Google Scholar 

  • Radvansky, G. A., D’Mello, S., Abbott, R. G., Morgan, B., Fike, K., & Tamplin, A. K. (2015). The fluid events model: Predicting continuous task action change. Quarterly Journal of Experimental Psychology, 68(10), 2051–2072.

    Google Scholar 

  • Radvansky, G. A., D’Mello, S. K., Abbott, R. G., & Bixler, R. E. (2016). Predicting individual action switching in covert and continuous interactive tasks using the fluid events model. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00023

  • Radvansky, G. A., & Zacks, J. M. (2014). Event cognition. Oxford University Press.

    Google Scholar 

  • Radvansky, G. A., & Zacks, J. M. (2017). Event boundaries in memory and cognition. Current Opinion in Behavioral Sciences, 17, 133–140.

    PubMed  PubMed Central  Google Scholar 

  • Raichle, M. E. (2015). The Brain’s default mode network. Annual Review of Neuroscience, 38(1), 433–447.

    PubMed  Google Scholar 

  • Ranganath, C., & Ritchey, M. (2012). Two cortical systems for memory-guided behaviour. Nature Reviews Neuroscience, 13(10), 713–726.

    PubMed  Google Scholar 

  • Reimer, J., McGinley, M. J., Liu, Y., Rodenkirch, C., Wang, Q., McCormick, D. A., & Tolias, A. S. (2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature. Communications, 7(1), Article 1.

    Google Scholar 

  • Ritchey, M., & Cooper, R. A. (2020). Deconstructing the posterior medial episodic network. Trends in Cognitive Sciences, 24(6), 451–465.

    PubMed  Google Scholar 

  • Rohlf, H., Jucksch, V., Gawrilow, C., Huss, M., Hein, J., Lehmkuhl, U., & Salbach-Andrae, H. (2012). Set shifting and working memory in adults with attention-deficit/hyperactivity disorder. Journal of Neural Transmission, 119(1), 95–106.

    PubMed  Google Scholar 

  • Ross, T. W., & Easton, A. (2022). The hippocampal horizon: Constructing and segmenting experience for episodic memory. Neuroscience & Biobehavioral Reviews, 132, 181–196.

    Google Scholar 

  • Rouhani, N., Norman, K. A., Niv, Y., & Bornstein, A. M. (2020). Reward prediction errors create event boundaries in memory. Cognition, 203, 104269. https://doi.org/10.1101/725440

    Article  PubMed  PubMed Central  Google Scholar 

  • Sahakyan, L., & Kelley, C. M. (2002). A contextual change account of the directed forgetting effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(6), 1064–1072.

    PubMed  Google Scholar 

  • Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30(1), 259–288.

    PubMed  Google Scholar 

  • Schwan, S., & Garsoffky, B. (2004). The cognitive representation of filmic event summaries. Applied Cognitive Psychology, 18(1), 37–55.

    Google Scholar 

  • Schwan, S., Garsoffky, B., & Hesse, F. W. (2000). Do film cuts facilitate the perceptual and cognitive organization of activitiy sequences? Memory & Cognition, 28(2), 214–223.

    Google Scholar 

  • Sherrill, A. M., Kurby, C. A., Lilly, M. M., & Magliano, J. P. (2019). The effects of state anxiety on analogue peritraumatic encoding and event memory: Introducing the stressful event segmentation paradigm. Memory, 27(2), 124–136.

    PubMed  Google Scholar 

  • Shin, Y. S., & DuBrow, S. (2020). Structuring memory through inference-based event segmentation. Topics in Cognitive Science, 13(1), 106–127.

    PubMed  Google Scholar 

  • Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–472.

    PubMed  Google Scholar 

  • Siefke, B. M., Smith, T. A., & Sederberg, P. B. (2019). A context-change account of temporal distinctiveness. Memory & Cognition, 47(6), 1158–1172.

    Google Scholar 

  • Sinclair, A. H., Manalili, G. M., Brunec, I. K., Adcock, R. A., & Barense, M. D. (2021). Prediction errors disrupt hippocampal representations and update episodic memories. Proceedings of the National Academy of Sciences, 118(51). https://doi.org/10.1073/pnas.2117625118

  • Skodzik, T., Holling, H., & Pedersen, A. (2017). Long-term memory performance in adult ADHD: A meta-analysis. Journal of Attention Disorders, 21(4), 267–283.

    PubMed  Google Scholar 

  • Smallwood, J., Bernhardt, B. C., Leech, R., Bzdok, D., Jefferies, E., & Margulies, D. S. (2021). The default mode network in cognition: A topographical perspective. Nature reviews neuroscience, 22(8), article 8. https://doi.org/10.1038/s41583-021-00474-4

  • Smallwood, J., & Schooler, J. W. (2015). The science of mind wandering: Empirically navigating the stream of consciousness. Annual Review of Psychology, 66(1), 487–518.

    PubMed  Google Scholar 

  • Sols, I., DuBrow, S., Davachi, L., & Fuentemilla, L. (2017). Event boundaries trigger rapid memory reinstatement of the prior events to promote their representation in Long-term memory. Current Biology, 27(22), 3499–3504.e4.

    PubMed  Google Scholar 

  • Speer, N. K., & Zacks, J. M. (2005). Temporal changes as event boundaries: Processing and memory consequences of narrative time shifts. Journal of Memory and Language, 53(1), 125–140.

    Google Scholar 

  • Strauss, G. P., Waltz, J. A., & Gold, J. M. (2014). A review of reward processing and motivational impairment in schizophrenia. Schizophrenia Bulletin, 40(Suppl_2), S107–S116.

    PubMed  Google Scholar 

  • Swallow, K. M., Zacks, J. M., & Abrams, R. A. (2009). Event boundaries in perception affect memory encoding and updating. Journal of Experimental Psychology: General, 138(2), 236–257.

    PubMed  Google Scholar 

  • Talmi, D., Kavaliauskaite, D., & Daw, N. D. (2021). In for a penny, in for a pound: Examining motivated memory through the lens of retrieved context models. Learning & Memory, 28(12), 445–456.

    Google Scholar 

  • Talmi, D., Lohnas, L. J., & Daw, N. D. (2019). A retrieved context model of the emotional modulation of memory. Psychological Review, 126(4), 455–485.

    PubMed  Google Scholar 

  • Tarder-Stoll, H., Jayakumar, M., Dimsdale-Zucker, H. R., Günseli, E., & Aly, M. (2020). Dynamic internal states shape memory retrieval. Neuropsychologia, 138, 107328. https://doi.org/10.1016/j.neuropsychologia.2019.107328

    Article  PubMed  Google Scholar 

  • Thomsen, D. K. (2015). Autobiographical periods: A review and central components of a theory. Review of General Psychology, 19(3), 294–310.

    Google Scholar 

  • Thomsen, D. K., & Berntsen, D. (2005). The end point effect in autobiographical memory: More than a calendar is needed. Memory, 13, 846–861.

    PubMed  Google Scholar 

  • Wang, Y. C., & Egner, T. (2022). Switching task sets creates event boundaries in memory. Cognition, 221, 104992. https://doi.org/10.1016/j.cognition.2021.104992

    Article  PubMed  Google Scholar 

  • Wen, T., & Egner, T. (2022). Retrieval context determines whether event boundaries impair or enhance temporal order memory. Cognition, 225, 105145. https://doi.org/10.1016/j.cognition.2022.105145

    Article  PubMed  Google Scholar 

  • Whittington, C. J., Podd, J., & Stewart-Williams, S. (2006). Memory deficits in Parkinson’s disease. Journal of Clinical and Experimental Neuropsychology, 28(5), 738–754.

    PubMed  Google Scholar 

  • Wolosin, S. M., Zeithamova, D., & Preston, A. R. (2012). Reward modulation of hippocampal subfield activation during successful associative encoding and retrieval. Journal of Cognitive Neuroscience, 24(7), 1532–1547.

    PubMed  PubMed Central  Google Scholar 

  • Wolosin, S. M., Zeithamova, D., & Preston, A. R. (2013). Distributed hippocampal patterns that discriminate reward context are associated with enhanced associative binding. Journal of Experimental Psychology: General, 142(4), 1264.

    PubMed  Google Scholar 

  • Zacks, J. M. (2020). Event perception and memory. Annual Review of Psychology, 71(1), 165–191.

    PubMed  PubMed Central  Google Scholar 

  • Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S., & Reynolds, J. R. (2007). Event perception: A mind-brain perspective. Psychological Bulletin, 133(2), 273–293.

    PubMed  PubMed Central  Google Scholar 

  • Zacks, J. M., & Tversky, B. (2001). Event structure in perception and conception. Psychological Bulletin, 79.

  • Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130(1), 29–58.

    PubMed  Google Scholar 

  • Zeithamova, D., Gelman, B. D., Frank, L., & Preston, A. R. (2018). Abstract representation of prospective reward in the hippocampus. Journal of Neuroscience, 38(47), 10093–10101.

    PubMed  Google Scholar 

  • Zheng, J., Schjetnan, A. G. P., Yebra, M., Gomes, B. A., Mosher, C. P., Kalia, S. K., Valiante, T. A., Mamelak, A. N., Kreiman, G., & Rutishauser, U. (2022). Neurons detect cognitive boundaries to structure episodic memories in humans. Nature Neuroscience, 25(3), Article 3. https://doi.org/10.1038/s41593-022-01020-w

  • Zwaan, R. A., Langston, M. C., & Graesser, A. C. (1995). The construction of situation models in narrative comprehension: An event-indexing model. Psychological Science, 6(5), 292–297.

    Google Scholar 

  • Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language comprehension and memory. Psychological Bulletin, 123(2), 162–185.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Elizabeth Marsh and Felipe De Brigard for helpful discussion on an earlier draft of the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxi Candice Wang.

Ethics declarations

Conflict of interest

No funds, grants, or other support were received. The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.C., Adcock, R.A. & Egner, T. Toward an integrative account of internal and external determinants of event segmentation. Psychon Bull Rev 31, 484–506 (2024). https://doi.org/10.3758/s13423-023-02375-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-023-02375-2

Keywords

Navigation