Skip to main content
Log in

A common format for representing spatial location in visual and motor working memory

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Does the mind rely on similar systems of spatial representation for both perception and action? Here, we assessed the format of location representations in two simple spatial localization tasks. In one task, participants simply remembered the location of an item based solely on visual input. In another, participants remembered the location of a point in space based solely on kinesthetic input. Participants’ recall errors were more consistent with the use of polar coordinates than Cartesian coordinates in both tasks. Moreover, measures of spatial bias and performance were correlated across modalities. In a subsequent study, we tested the flexibility with which people use polar coordinates to represent space; we show that the format in which the information is presented to participants influences how that information is encoded and the errors that are made as a result. We suggest that polar coordinates may be a common means of representing location information across visual and motor modalities, but that these representations are also flexible in form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Both experiments were pre-registered. Those pre-registrations as well as the raw data and analyses can be found via the Open Science Framework at: https://osf.io/yeqbc/.

References

  • Baud-Bovy, G., & Viviani, P. (2004). Amplitude and direction errors in kinesthetic pointing. Experimental Brain Research, 157, 197–214.

    Article  PubMed  Google Scholar 

  • Flanders, M., Tillery, S. I. H., & Soechting, J. F. (1992). Early stages in a sensorimotor transformation. Behavioral and Brain Sciences, 15, 309–320.

    Article  Google Scholar 

  • Gallistel, C. R. (1990). The organization of learning. MIT Press.

    Google Scholar 

  • Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15, 20–25.

    Article  PubMed  Google Scholar 

  • Gordon, J., Ghilardi, M. F., Cooper, S. E., & Ghez, C. (1994). Accuracy of planar reaching movements. Experimental Brain Research, 99, 112–130.

    Article  PubMed  Google Scholar 

  • Hafting, T., Fyhn, M., Molden, S., Moser, M. B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806.

    Article  PubMed  Google Scholar 

  • Hancock, G. R., Butler, M. S., & Fischman, M. G. (1995). On the problem of two-dimensional error scores: Measures and analyses of accuracy, bias, and consistency. Journal of Motor Behavior, 27, 241–250.

    Article  PubMed  Google Scholar 

  • Hudson, T. E., & Landy, M. S. (2012). Motor learning reveals the existence of multiple codes for movement planning. Journal of Neurophysiology, 108, 2708–2716.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huttenlocher, J., Hedges, L. V., & Duncan, S. (1991). Categories and particulars: Prototype effects in estimating spatial location. Psychological Review, 98, 352–376.

    Article  PubMed  Google Scholar 

  • Huttenlocher, J., Newcombe, N., & Sandberg, E. H. (1994). The coding of spatial location in young children. Cognitive Psychology, 27, 115–147.

    Article  PubMed  Google Scholar 

  • Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 683–702.

    PubMed  Google Scholar 

  • Kosslyn, S. M. (1996). Image and brain: The resolution of the imagery debate. MIT Press.

    Google Scholar 

  • Kosslyn, S. M., Thompson, W. L., Klm, I. J., & Alpert, N. M. (1995). Topographical representations of mental images in primary visual cortex. Nature, 378, 496–498.

    Article  PubMed  Google Scholar 

  • Kuipers, B. (1978). Modeling spatial knowledge. Cognitive Science, 2, 129–153.

    Article  Google Scholar 

  • Kuipers, B. (1982). The “map in the head” metaphor. Environment and Behavior, 14, 202–220.

    Article  Google Scholar 

  • Krakauer, J. W., Pine, Z. M., Ghilardi, M. F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20, 8916–8924.

    Article  PubMed  Google Scholar 

  • Lee, S. A., Sovrano, V. A., & Spelke, E. S. (2012). Navigation as a source of geometric knowledge: Young children’s use of length, angle, distance, and direction in a reorientation task. Cognition, 123, 144–161.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maley, C. J. (2011). Analog and digital, continuous and discrete. Philosophical Studies, 155, 117–131.

    Article  Google Scholar 

  • Maley, C. J. (2021). The physicality of representation. Synthese, 199, 14725–14750.

    Article  Google Scholar 

  • Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. Freeman.

    Google Scholar 

  • McNamara, T. P., Hardy, J. K., & Hirtle, S. C. (1989). Subjective hierarchies in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 211–227.

    PubMed  Google Scholar 

  • Messier, J., & Kalaska, J. F. (1999). Comparison of variability of initial kinematics and endpoints of reaching movements. Experimental Brain Research, 125, 139–152.

    Article  PubMed  Google Scholar 

  • Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414–417.

    Article  Google Scholar 

  • Müller, M., & Wehner, R. (1988). Path integration in desert ants, Cataglyphis fortis. Proceedings of the National Academy of Sciences, USA, 85, 5287–5290.

    Article  Google Scholar 

  • O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Clarendon Press.

    Google Scholar 

  • Peer, M., Brunec, I. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 25, 37–54.

    Article  PubMed  Google Scholar 

  • Pylyshyn, Z. W. (1973). What the mind’s eye tells the mind’s brain: A critique of mental imagery. Psychological Bulletin, 80, 1–24.

    Article  Google Scholar 

  • Robinson, D. A. (1972). Eye movements evoked by collicular stimulation in the alert monkey. Vision Research, 12, 1795–1808.

    Article  PubMed  Google Scholar 

  • Taube, J. S. (1998). Head direction cells and the neurophysiological basis for a sense of direction. Progress in Neurobiology, 55, 225–256.

    Article  PubMed  Google Scholar 

  • Taylor, H. A., & Tversky, B. (1992). Descriptions and depictions of environments. Memory & Cognition, 20, 483–496.

    Article  Google Scholar 

  • Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208.

    Article  PubMed  Google Scholar 

  • Warren, W. H., Rothman, D. B., Schnapp, B. H., & Ericson, J. D. (2017). Wormholes in virtual space: From cognitive maps to cognitive graphs. Cognition, 166, 152–163.

    Article  PubMed  Google Scholar 

  • Wittlinger, M., Wehner, R., & Wolf, H. (2006). The ant odometer: Stepping on stilts and stumps. Science, 312, 1965–1967.

    Article  PubMed  Google Scholar 

  • Yang, F., & Flombaum, J. (2018). Polar coordinates as the format of spatial representation in visual perception. Journal of Vision, 18, Article 21. https://doi.org/10.1167/18.10.21

    Article  Google Scholar 

  • Yousif, S. R. (2022). Redundancy and reducibility in the formats of spatial representations. Perspectives on Psychological Science, 17, 1778–1793.

  • Yousif, S. R., Chen, Y. C., & Scholl, B. J. (2020). Systematic angular biases in the representation of visual space. Attention, Perception, & Psychophysics, 82, 3124–3143.

    Article  Google Scholar 

  • Yousif, S. R, & Keil, F. (2021a). ‘Decoding’ the locus of spatial representation from simple localization errors. Proceedings of the Annual Meeting of the Cognitive Science Society, 43. Retrieved from https://escholarship.org/uc/item/185176jj

  • Yousif, S. R., & Keil, F. C. (2021b). The shape of space: Evidence for spontaneous but flexible use of polar coordinates in visuospatial representations. Psychological Science, 32, 573–586.

    Article  PubMed  Google Scholar 

  • Yousif, S. R., & Lourenco, S. F. (2017). Are all geometric cues created equal? Children’s use of distance and length for reorientation. Cognitive Development, 43, 159–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami R. Yousif.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousif, S.R., Forrence, A.D. & McDougle, S.D. A common format for representing spatial location in visual and motor working memory. Psychon Bull Rev (2023). https://doi.org/10.3758/s13423-023-02366-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.3758/s13423-023-02366-3

Keywords

Navigation