Abstract
Human behavior often involves the use of an object held by or attached to the body, which modifies the individual’s action capabilities. Moreover, most everyday behaviors consist of sets of behaviors that are nested over multiple spatial and temporal scales, which require perceiving and acting on nested affordances for the person-plus-object system. This systematic review investigates how individuals attune to information about affordances involving the person-plus-object system and how they (re)calibrate their actions to relevant information. We analyzed 71 articles—34 on attunement and 37 on (re)calibration with healthy participants—that experimentally investigated the processes involved in the perception of affordances for the person-plus-object system (including attunement, calibration, and recalibration). With respect to attunement, objects attached to the body create a multiplicity of affordances for the person-plus-object system, and individuals learned (1) to detect information about affordances of (and for) the person-plus-object system in a task and (2) to choose whether, when, and how to exploit those affordances to perform that task. Concerning (re)calibration, individuals were able (1) to quickly scale their actions in relation to the (changed) action capabilities of the person-plus-object system and (2) to perceive multiple functionally equivalent ways to exploit the affordances of that system, and these abilities improved with practice. Perceiving affordances for the person-plus-object system involves learning to detect the information about such affordances (attunement) and the scaling of behaviors to such information (calibration). These processes imply a general ability to incorporate an object attached to the body into an integrated person-plus-object system.
This is a preview of subscription content, access via your institution.



References
Abney, D. H., Wagman, J. B., & Schneider, W. J. (2014). Changing grasp position on a wielded object provides self-training for the perception of length. Attention, Perception, & Psychophysics, 76(1), 247–254. https://doi.org/10.3758/s13414-013-0550-x
Araújo, D., Davids, K., & Serpa, S. (2005). An ecological approach to expertise effects in decision-making in a simulated sailing regatta. Psychology of Sport and Exercise, 6(6), 671–692. https://doi.org/10.1016/j.psychsport.2004.12.003
Arzamarski, R., Isenhower, R. W., Kay, B. A., Turvey, M. T., & Michaels, C. F. (2010). Effects of intention and learning on attention to information in dynamic touch. Attention, Perception, & Psychophysics, 72(3), 721–735. https://doi.org/10.3758/APP.72.3.721
Bingham, G. P. (1988). Task-specific devices and the perceptual bottleneck. Human Movement Science, 7(2/4), 225–264. https://doi.org/10.1016/0167-9457(88)90013-9
Bingham, G. P., & Muchisky, M. M. (1995). “Center of mass perception”: Affordances as dispositions determined by dynamics. In J. M. Flach, P. A. Hancock, J. Caird, & K. J. Vicente (Eds.), Global perspectives on the ecology of human-machine systems. Erlbaum.
Brand, M. T., & de Oliveira, R. F. (2017). Recalibration in functional perceptual-motor tasks: A systematic review. Human Movement Science, 56, 54–70. https://doi.org/10.1016/j.humov.2017.10.020
Bruineberg, J., & Rietveld, E. (2014). Self-organization, free energy minimization, and optimal grip on a field of affordances. Frontiers in Human Neuroscience, 8, 599. https://doi.org/10.3389/fnhum.2014.00599
Carello, C., Fitzpatrick, P., Domaniewicz, I., Chan, T.-C., & Turvey, M. T. (1992). Effortful touch with minimal movement. Journal of Experimental Psychology: Human Perception and Performance, 18(1), 290–302. https://doi.org/10.1037/0096-1523.18.1.290
Carello, C., Thuot, S., & Turvey, M. T. (2000). Aging and the perception of a racket’s sweet spot. Human Movement Science. https://doi.org/10.1016/S0167-9457(99)00044-5
Chang, C.-H., Wade, M. G., Stoffregen, T. A., & Ho, H.-Y. (2008). Length perception by dynamic touch: The effects of aging and experience. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 63(3), P165–P170. https://doi.org/10.1093/geronb/63.3.P165
Comalli, D., Franchak, J., Char, A., & Adolph, K. (2013). Ledge and wedge: Younger and older adults’ perception of action possibilities. Experimental Brain Research, 228(2), 183–192. https://doi.org/10.1007/s00221-013-3550-0
Comalli, D. M., Persand, D., & Adolph, K. E. (2017). Motor decisions are not black and white: Selecting actions in the “gray zone.” Experimental Brain Research, 235(6), 1793–1807. https://doi.org/10.1007/s00221-017-4879-6
Crowe, M. (2013). Crowe Critical Appraisal Tool (CCAT) user guide. https://conchra.com.au/wp-content/uploads/2015/12/CCAT-user-guide-v1.4.pdf Accessed 01 Nov 2021
Crowe, M., Sheppard, L., & Campbell, A. (2011). Comparison of the effects of using the Crowe Critical Appraisal Tool versus informal appraisal in assessing health research: A randomised trial. International Journal of Evidence-Based Healthcare, 9(4), 444–449. https://doi.org/10.1111/j.1744-1609.2011.00237.x
Crowe, M., Sheppard, L., & Campbell, A. (2012). Reliability analysis for a proposed critical appraisal tool demonstrated value for diverse research designs. Journal of Clinical Epidemiology, 65(4), 375–383. https://doi.org/10.1016/j.jclinepi.2011.08.006
Day, B. M., Wagman, J. B., & Smith, P. J. K. (2015). Perception of maximum stepping and leaping distance: Stepping affordances as a special case of leaping affordances. Acta Psychologica, 158, 26–35. https://doi.org/10.1016/j.actpsy.2015.03.010
de Vries, S., Withagen, R., & Zaal, F. T. J. M. (2015). Transfer of attunement in length perception by dynamic touch. Attention, Perception, & Psychophysics, 77(4), 1396–1410. https://doi.org/10.3758/s13414-015-0872-y
Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences, 98(24), 13763–13768. https://doi.org/10.1073/pnas.231499798
Fajen, B. R. (2005). Perceiving possibilities for action: On the necessity of calibration and perceptual learning for the visual guidance of action. Perception, 34(6), 717–740. https://doi.org/10.1068/p5405
Fajen, B. R. (2007). Affordance-based control of visually guided action. Ecological Psychology, 19(4), 383–410. https://doi.org/10.1080/10407410701557877
Fajen, B. R. (2008). Perceptual learning and the visual control of braking. Perception & Psychophysics, 70(6), 1117–1129. https://doi.org/10.3758/PP.70.6.1117
Fajen, B. R., & Devaney, M. C. (2006). Learning to control collisions: The role of perceptual attunement and action boundaries. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 300–313. https://doi.org/10.1037/0096-1523.32.2.300
Finkel, L., Schmidt, K., Scheib, J. P. P., & Randerath, J. (2019). Does it still fit?—Adapting affordance judgments to altered body properties in young and older adults. PLOS ONE, 14(12), e0226729. https://doi.org/10.1371/journal.pone.0226729
Fitzpatrick, P., Bui, P., & Garry, A. (2018). The role of perception–action systems in the development of tool-using skill. Ecological Psychology, 30(1), 74–98. https://doi.org/10.1080/10407413.2017.1410044
Fitzpatrick, P., Wagman, J. B., & Schmidt, R. C. (2012). Alterations in movement dynamics in a tool-use task: The role of action-relevant inertial tool properties. Zeitschrift Für Psychologie, 220(1), 23–28. https://doi.org/10.1027/2151-2604/a000087
Fragaszy, D., Simpson, K., Cummins-Sebree, S., & Brakke, K. (2016). Ontogeny of tool use: How do toddlers use hammers? Developmental Psychobiology, 58(6), 759–772. https://doi.org/10.1002/dev.21416
Franchak, J. M. (2017). Exploratory behaviors and recalibration: What processes are shared between functionally similar affordances? Attention, Perception, & Psychophysics, 79(6), 1816–1829. https://doi.org/10.3758/s13414-017-1339-0
Franchak, J. M. (2019). Development of affordance perception and recalibration in children and adults. Journal of Experimental Child Psychology, 183, 100–114. https://doi.org/10.1016/j.jecp.2019.01.016
Franchak, J. M. (2020). Calibration of perception fails to transfer between functionally similar affordances. Quarterly Journal of Experimental Psychology, 73(9), 1311–1325. https://doi.org/10.1177/1747021820926884
Franchak, J. M., & Adolph, K. E. (2014). Gut estimates: Pregnant women adapt to changing possibilities for squeezing through doorways. Attention, Perception, & Psychophysics, 76(2), 460–472. https://doi.org/10.3758/s13414-013-0578-y
Franchak, J. M., & Somoano, F. A. (2018). Rate of recalibration to changing affordances for squeezing through doorways reveals the role of feedback. Experimental Brain Research, 236(6), 1699–1711. https://doi.org/10.1007/s00221-018-5252-0
Gibson, J. J. (1966). The senses considered as perceptual systems. Houghton Mifflin.
Gibson, E. J. (1969). Principles of perceptual learning and development. Appleton-Century-Crofts.
Gibson, J. J. (1979). The ecological approach to visual perception. Houghton Mifflin.
Hackney, A. L., Cinelli, M. E., & Frank, J. S. (2014). Is the critical point for aperture crossing adapted to the person-plus-object system? Journal of Motor Behavior, 46(5), 319–327. https://doi.org/10.1080/00222895.2014.913002
Hacques, G., Komar, J., Dicks, M., & Seifert, L. (2021). Exploring to learn and learning to explore. Psychological Research, 85(4), 1367–1379. https://doi.org/10.1007/s00426-020-01352-x
Higuchi, T., Takada, H., Matsuura, Y., & Imanaka, K. (2004). Visual estimation of spatial requirements for locomotion in novice wheelchair users. Journal of Experimental Psychology: Applied, 10(1), 55–66. https://doi.org/10.1037/1076-898X.10.1.55
Higuchi, T., Cinelli, M. E., Greig, M. A., & Patla, A. E. (2006). Locomotion through apertures when wider space for locomotion is necessary: Adaptation to artificially altered bodily states. Experimental Brain Research, 175(1), 50–59. https://doi.org/10.1007/s00221-006-0525-4
Higuchi, T., Cinelli, M. E., & Patla, A. E. (2009). Gaze behavior during locomotion through apertures: The effect of locomotion forms. Human Movement Science, 28(6), 760–771. https://doi.org/10.1016/j.humov.2009.07.012
Higuchi, T., Murai, G., Kijima, A., Seya, Y., Wagman, J. B., & Imanaka, K. (2011). Athletic experience influences shoulder rotations when running through apertures. Human Movement Science, 30(3), 534–549. https://doi.org/10.1016/j.humov.2010.08.003
Hirose, N., & Nishio, A. (2001). The process of adaptation to perceiving new action capabilities. Ecological Psychology, 13(1), 49–69. https://doi.org/10.1207/S15326969ECO1301_3
Hohn, R. E., Slaney, K. L., & Tafreshi, D. (2019). Primary study quality in psychological meta-analyses: An empirical assessment of recent practice. Frontiers in Psychology, 9, 2667. https://doi.org/10.3389/fpsyg.2018.02667
Hove, P., Riley, M. A., & Shockley, K. (2006). Perceiving affordances of hockey sticks by dynamic touch. Ecological Psychology, 18(3), 163–189. https://doi.org/10.1207/s15326969eco1803_2
Ishak, S., Adolph, K. E., & Lin, G. C. (2008). Perceiving affordances for fitting through apertures. Journal of Experimental Psychology: Human Perception and Performance, 34(6), 1501–1514. https://doi.org/10.1037/a0011393
Ishak, S., Assoian, A. B., & Rincon, S. (2019). Experience influences affordance perception for low crawling under barriers with altered body dimensions. Ecological Psychology, 31(4), 332–352. https://doi.org/10.1080/10407413.2019.1619456
Jacobs, D. M., & Michaels, C. F. (2002). On the apparent paradox of learning and realism. Ecological Psychology, 14(3), 127–139. https://doi.org/10.1207/S15326969ECO1403_2
Jacobs, D. M., & Michaels, C. F. (2007). Direct learning. Ecological Psychology, 19(4), 321–349. https://doi.org/10.1080/10407410701432337
Jacobs, D. M., Michaels, C. F., & Runeson, S. (2000). Learning to perceive the relative mass of colliding balls: The effects of ratio scaling and feedback. Perception & Psychophysics, 62(7), 1332–1340. https://doi.org/10.3758/BF03212135
Jacobs, D. M., Michaels, C. F., & Runeson, S. (2001). Learning to visually perceive the relative mass of colliding balls in globally and locally constrained task ecologies. Journal of Experimental Psychology: Human Perception and Performance, 27(5), 1019–1038. https://doi.org/10.1037/0096-1523.27.5.1019
Keen, R., Lee, M.-H., & Adolph, K. (2014). Planning an action: A developmental progression in tool use. Ecological Psychology, 26(1/2), 98–108. https://doi.org/10.1080/10407413.2014.874917
Kelso, J. A. S. (2012). Multistability and metastability: Understanding dynamic coordination in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1591), 906–918. https://doi.org/10.1098/rstb.2011.0351
Kelso, J. A. S., Buchanan, J. J., DeGuzman, G. C., & Ding, M. (1993). Spontaneous recruitment and annihilation of degrees of freedom in biological coordination. Physics Letters A, 179(4/5), 364–371. https://doi.org/10.1016/0375-9601(93)90692-S
Konczak, J., Meeuwsen, H. J., & Cress, M. E. (1992). Changing affordances in stair climbing: The perception of maximum climbability in young and older adults. Journal of Experimental Psychology: Human Perception and Performance, 18(3), 691–697. https://doi.org/10.1037/0096-1523.18.3.691
Malek, E. A., & Wagman, J. B. (2008). Kinetic potential influences visual and remote haptic perception of affordances for standing on an inclined surface. Quarterly Journal of Experimental Psychology, 61(12), 1813–1826. https://doi.org/10.1080/17470210701712978
Mangalam, M., Pacheco, M. M., Fragaszy, D. M., & Newell, K. M. (2019). Perceptual learning of tooling affordances of a jointed object via dynamic touch. Ecological Psychology, 31(1), 14–29. https://doi.org/10.1080/10407413.2018.1473714
Mangalam, M., Fragaszy, D. M., Wagman, J. B., Day, B. M., Kelty-Stephen, D. G., Bongers, R. M., Stout, D. W., & Osiurak, F. (2022). On the psychological origins of tool use. Neuroscience & Biobehavioral Reviews, 134, 104521. https://doi.org/10.1016/j.neubiorev.2022.104521
Mark, L. S. (1987). Eyeheight-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 13(3), 361–370. https://doi.org/10.1037/0096-1523.13.3.361
Mark, L. S., Balliett, J. A., Craver, K. D., Douglas, S. D., & Fox, T. (1990). What an actor must do in order to perceive the affordance for sitting. Ecological Psychology, 2(4), 325–366. https://doi.org/10.1207/s15326969eco0204_2
Mark, L. S., Ye, L., & Smart, L. J. (2015). Perceiving the nesting of affordances for complex goal-directed actions. In R. R. Hoffman, P. A. Hancock, M. W. Scerbo, R. Parasuraman, & J. L. Szalma (Eds.), The Cambridge handbook of applied perception research (pp. 547–567). Cambridge University Press. https://doi.org/10.1017/CBO9780511973017.034
Mason, P. H. (2010). Degeneracy at multiple levels of complexity. Biological Theory, 5(3), 277–288. https://doi.org/10.1162/BIOT_a_00041
Mason, P. H. (2015). Degeneracy: Demystifying and destigmatizing a core concept in systems biology. Complexity, 20(3), 12–21. https://doi.org/10.1002/cplx.21534
Menger, R., & Withagen, R. (2009). How mechanical context and feedback jointly determine the use of mechanical variables in length perception by dynamic touch. Attention, Perception, & Psychophysics, 71(8), 1862–1875. https://doi.org/10.3758/APP.71.8.1862
Michaels, C. F., Weier, Z., & Harrison, S. J. (2007). Using vision and dynamic touch to perceive the affordances of tools. Perception, 36(5), 750–772. https://doi.org/10.1068/p5593
Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Group, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLOS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
Muroi, D., & Higuchi, T. (2017). Walking through an aperture with visual information obtained at a distance. Experimental Brain Research, 235(1), 219–230. https://doi.org/10.1007/s00221-016-4781-7
Pagano, C. C., Day, B., & Hartman, L. S. (2021). An argument framework for ecological psychology and architecture design. Technology|Architecture + Design, 5(1), 31–36. https://doi.org/10.1080/24751448.2021.1863665
Pepping, G.-J., & Li, F.-X. (2000). Sex differences and action scaling in overhead reaching. Perceptual and Motor Skills, 90(3_suppl), 1123–1129. https://doi.org/10.2466/pms.2000.90.3c.1123
Petrucci, M. N., Horn, G. P., Rosengren, K. S., & Hsiao-Wecksler, E. T. (2016). Inaccuracy of affordance judgments for firefighters wearing personal protective equipment. Ecological Psychology, 28(2), 108–126. https://doi.org/10.1080/10407413.2016.1163987
Peker, A. T., Böge, V., Bailey, G. S., Wagman, J. B., & Stoffregen, T. A. (2023). Perception of higher-order affordances for kicking in soccer. Journal of Experimental Psychology: Human Perception and Performance, 49(5), 623–634. https://doi.org/10.1037/xhp0001108
Pfaff, L. M., & Cinelli, M. E. (2018). The effects of obstacle type and locomotion form on path selection in rugby players. Motor Control, 22(3), 263–274. https://doi.org/10.1123/mc.2017-0043
Profeta, V. L. S., Turvey, M. T., & Carello, C. (2020). Goal-directed action and the architecture of movement organization. In M. L. Latash (Ed.), Bernstein’s construction of movements (pp. 308–319). Routledge. https://doi.org/10.4324/9780367816797-23
Ramenzoni, V. C., Riley, M. A., Shockley, K., & Davis, T. (2008). Short article: Carrying the height of the world on your ankles: Encumbering observers reduces estimates of how high an actor can jump. Quarterly Journal of Experimental Psychology, 61(10), 1487–1495. https://doi.org/10.1080/17470210802100073
Reed, E. S. (1982). An outline of a theory of action systems. Journal of Motor Behavior, 14(2), 98–134. https://doi.org/10.1080/00222895.1982.10735267
Regia-Corte, T., & Wagman, J. B. (2008). Perception of affordances for standing on an inclined surface depends on height of center of mass. Experimental Brain Research, 191(1), 25–35. https://doi.org/10.1007/s00221-008-1492-8
Richardson, M. J., Shockley, K., Fajen, B. R., Riley, M. A., & Turvey, M. T. (2008). Ecological psychology: Six principles for an embodied–embedded approach to behavior. In Handbook of cognitive science (pp. 159–187). Elsevier.
Rop, G., & Withagen, R. (2014). Perceivers vary in their capacity to benefit from feedback in learning to perceive length by dynamic touch. Attention, Perception, & Psychophysics, 76(3), 864–876. https://doi.org/10.3758/s13414-013-0598-7
Runeson, S. (1977). On the possibility of “smart” perceptual mechanisms. Scandinavian Journal of Psychology, 18(1), 172–179. https://doi.org/10.1111/j.1467-9450.1977.tb00274.x
Seifert, L., Komar, J., Barbosa, T., Toussaint, H., Millet, G., & Davids, K. (2014). Coordination pattern variability provides functional adaptations to constraints in swimming performance. Sports Medicine, 44(10), 1333–1345. https://doi.org/10.1007/s40279-014-0210-x
Seifert, L., Komar, J., Araújo, D., & Davids, K. (2016). Neurobiological degeneracy: A key property for functional adaptations of perception and action to constraints. Neuroscience & Biobehavioral Reviews, 69, 159–165. https://doi.org/10.1016/j.neubiorev.2016.08.006
Seifert, L., Dicks, M., Wittmann, F., & Wolf, P. (2021). The influence of skill and task complexity on perception of nested affordances. Attention, Perception, & Psychophysics, 83(8), 3240–3249. https://doi.org/10.3758/s13414-021-02355-5
Shaw, R., & Kinsella-Shaw, J. (1988). Ecological mechanics: A physical geometry for intentional constraints. Human Movement Science, 7(2/4), 155–200. https://doi.org/10.1016/0167-9457(88)90011-5
Shaw, R., & Turvey, M. T. (1981). Coalitions as models for ecosystems: A realist perspective on perceptual organization. In M. Kubovy & J. R. Pomerantz (Eds.), perceptual organization (pp. 343–415). Routledge. https://doi.org/10.4324/9781315512372-11
Steenbergen, B., van der Kamp, J., Smithsman, A. W., & Carson, R. G. (1997). Spoon handling in two-to-four-year-old children. Ecological Psychology, 9(2), 113–129. https://doi.org/10.1207/s15326969eco0902_1
Stephen, D. G., & Hajnal, A. (2011). Transfer of calibration between hand and foot: Functional equivalence and fractal fluctuations. Attention, Perception, & Psychophysics, 73(5), 1302–1328. https://doi.org/10.3758/s13414-011-0142-6
Stoffregen, T. A. (2003a). Affordances as properties of the animal–environment system. Ecological Psychology, 15(2), 115–134. https://doi.org/10.1207/S15326969ECO1502_2
Stoffregen, T. A. (2003b). Affordances are enough: Reply to Chemero et al. (2003). Ecological Psychology, 15(1), 29–36. https://doi.org/10.1207/S15326969ECO1501_03
Stoffregen, T. A., Yang, C.-M., & Bardy, B. G. (2005). Affordance judgments and nonlocomotor body movement. Ecological Psychology, 17(2), 75–104. https://doi.org/10.1207/s15326969eco1702_2
Stoffregen, T. A., Yang, C.-M., Giveans, M. R., Flanagan, M., & Bardy, B. G. (2009). Movement in the perception of an affordance for wheelchair locomotion. Ecological Psychology, 21(1), 1–36. https://doi.org/10.1080/10407410802626001
Thomas, B. J., & Riley, M. A. (2014). Remembered affordances reflect the fundamentally action-relevant, context-specific nature of visual perception. Journal of Experimental Psychology: Human Perception and Performance, 40(6), 2361–2371. https://doi.org/10.1037/xhp0000015
Thomas, B. J., & Riley, M. A. (2015). The selection and usage of information for perceiving and remembering intended and unintended object properties. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 807–815. https://doi.org/10.1037/xhp0000050
Thomas, B. J., Wagman, J. B., Hawkins, M., Havens, M., & Riley, M. A. (2017). The independent perceptual calibration of action-neutral and -referential environmental properties. Perception, 46(5), 586–604. https://doi.org/10.1177/0301006616679172
van Andel, S., Cole, M. H., & Pepping, G.-J. (2017). A systematic review on perceptual-motor calibration to changes in action capabilities. Human Movement Science, 51, 59–71. https://doi.org/10.1016/j.humov.2016.11.004
van Leeuwen, L., Smitsman, A., & van Leeuwen, C. (1994). Affordances, perceptual complexity, and the development of tool use. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 174–191. https://doi.org/10.1037/0096-1523.20.1.174
Vicente, K. J., & Rasmussen, J. (1990). The ecology of human-machine systems 11: Mediating “direct perception” in complex work domains. Ecological Psychology, 2(3), 207–249. https://doi.org/10.1207/s15326969eco0203_2
Wagman, J. B. (2012). Perception of maximum reaching height reflects impending changes in reaching ability and improvements transfer to unpracticed reaching tasks. Experimental Brain Research, 219(4), 467–476. https://doi.org/10.1007/s00221-012-3104-x
Wagman, J. B., & Carello, C. (2001). Affordances and inertial constraints on tool use. Ecological psychology, 13(3), 173–195. https://doi.org/10.1207/S15326969ECO1303_1
Wagman, J. B., & Carello, C. (2003). Haptically creating affordances: The user-tool interface. Journal of Experimental Psychology: Applied, 9(3), 175–186. https://doi.org/10.1037/1076-898X.9.3.175
Wagman, J. B., & Malek, E. A. (2007). Perception of whether an object can be carried through an aperture depends on anticipated speed. Experimental Psychology, 54(1), 54–61. https://doi.org/10.1027/1618-3169.54.1.54
Wagman, J. B., & Morgan, L. L. (2010). Nested prospectivity in perception: Perceived maximum reaching height reflects anticipated changes in reaching ability. Psychonomic Bulletin & Review, 17(6), 905–909. https://doi.org/10.3758/PBR.17.6.905
Wagman, J. B., & Smith, P. J. K. (2018). Perception of affordances for stepping over an expanse with crutches. Perception, 47(10–11), 1106–1109. https://doi.org/10.1177/0301006618802508
Wagman, J. B., & Stoffregen, T. A. (2020). It doesn’t add up: Nested affordances for reaching are perceived as a complex particular. Attention, Perception, & Psychophysics, 82(8), 3832–3841. https://doi.org/10.3758/s13414-020-02108-w
Wagman, J. B., & Taylor, K. R. (2004). Chosen striking location and the user-tool-environment system. Journal of Experimental Psychology: Applied, 10(4), 267–280. https://doi.org/10.1037/1076-898X.10.4.267
Wagman, J. B., & Taylor, K. R. (2005). Perceiving affordances for aperture crossing for the person-plus-object system. Ecological Psychology, 17(2), 105–130. https://doi.org/10.1207/s15326969eco1702_3
Wagman, J. B., Shockley, K., Riley, M. A., & Turvey, M. T. (2001). Attunement, calibration, and exploration in fast haptic perceptual learning. Journal of Motor Behavior, 33(4), 323–327. https://doi.org/10.1080/00222890109601917
Wagman, J. B., Thomas, B. J., McBride, D. M., & Day, B. M. (2013). Perception of maximum reaching height when the means of reaching are no longer in view. Ecological Psychology, 25(1), 63–80. https://doi.org/10.1080/10407413.2013.753810
Wagman, J. B., Taheny, C. A., & Higuchi, T. (2014). Improvements in perception of maximum reaching height transfer to increases or decreases in reaching ability. The American Journal of Psychology, 127(3), 269. https://doi.org/10.5406/amerjpsyc.127.3.0269
Wagman, J. B., Caputo, S. E., & Stoffregen, T. A. (2016a). Hierarchical nesting of affordances in a tool use task. Journal of Experimental Psychology: Human Perception and Performance, 42(10), 1627–1642. https://doi.org/10.1037/xhp0000251
Wagman, J. B., Caputo, S. E., & Stoffregen, T. A. (2016b). Sensitivity to hierarchical relations among affordances in the assembly of asymmetric tools. Experimental Brain Research, 234(10), 2923–2933. https://doi.org/10.1007/s00221-016-4695-4
Wagman, J. B., Cialdella, V. T., & Stoffregen, T. A. (2019). Higher order affordances for reaching: Perception and performance. Quarterly Journal of Experimental Psychology, 72(5), 1200–1211. https://doi.org/10.1177/1747021818784403
Wagman, J. B., & Van Norman, E. R. (2011). Transfer of calibration in dynamic touch: What do perceivers learn when they learn about length of a wielded object? Quarterly Journal of Experimental Psychology, 64(5), 889–901. https://doi.org/10.1080/17470218.2010.526233
Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology: Human Perception and Performance, 10(5), 683–703. https://doi.org/10.1037/0096-1523.10.5.683
Withagen, R., & Caljouw, S. R. (2011). Aging affects attunement in perceiving length by dynamic touch. Attention, Perception, & Psychophysics, 73(4), 1216–1226. https://doi.org/10.3758/s13414-011-0092-z
Withagen, R., & Michaels, C. F. (2004). Transfer of calibration in length perception by dynamic touch. Perception & Psychophysics, 66(8), 1282–1292. https://doi.org/10.3758/BF03194998
Withagen, R., & Michaels, C. F. (2005). The role of feedback information for calibration and attunement in perceiving length by dynamic touch. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1379–1390. https://doi.org/10.1037/0096-1523.31.6.1379
Withagen, R., & Michaels, C. F. (2007). Transfer of calibration between length and sweet-spot perception by dynamic touch. Ecological Psychology, 19(1), 1–19. https://doi.org/10.1080/10407410709336948
Withagen, R., & van Wermeskerken, M. (2009). Individual differences in learning to perceive length by dynamic touch: Evidence for variation in perceptual learning capacities. Perception & Psychophysics, 71(1), 64–75. https://doi.org/10.3758/APP.71.1.64
Yasuda, M., Wagman, J. B., & Higuchi, T. (2014). Can perception of aperture passability be improved immediately after practice in actual passage? Dissociation between walking and wheelchair use. Experimental Brain Research, 232(3), 753–764. https://doi.org/10.1007/s00221-013-3785-9
Ye, L., Cardwell, W., & Mark, L. S. (2009). Perceiving multiple affordances for objects. Ecological Psychology, 21(3), 185–217. https://doi.org/10.1080/10407410903058229
Yu, Y., & Stoffregen, T. A. (2012). Postural and locomotor contributions to affordance perception. Journal of Motor Behavior, 44(5), 305–311. https://doi.org/10.1080/00222895.2012.706659
Yu, Y., Bardy, B. G., & Stoffregen, T. A. (2010). Influences of Head and torso movement before and during affordance perception. Journal of Motor Behavior, 43(1), 45–54. https://doi.org/10.1080/00222895.2010.533213
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open practices statement
This systematic review does contain supplementary material and, this systematic review was not preregistered.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Vauclin, P., Wheat, J., Wagman, J.B. et al. A systematic review of perception of affordances for the person-plus-object system. Psychon Bull Rev (2023). https://doi.org/10.3758/s13423-023-02319-w
Accepted:
Published:
DOI: https://doi.org/10.3758/s13423-023-02319-w