Understanding the collinear masking effect in visual search through eye tracking

Abstract

Recent research has reported that, while both orientation contrast and collinearity increase target salience in visual search, a combination of the two counterintuitively masks a local target. Through eye-tracking and eye-movement analysis with hidden Markov models (EMHMM), here we showed that this collinear masking effect was associated with reduced eye-fixation consistency (as measured in entropy) at the central fixation cross prior to the search display presentation. As a decreased precision of saccade landing position is shown to be related to attention shift away from the saccadic target, our result suggested that the collinear masking effect may be related to attention shift to a non-saccadic-goal location in expectation of the search display before saccading to the central fixation cross. This attention shift may consequently interfere with attention capture by the collinear distractor containing the target, resulting in the masking effect. In contrast, although older adults had longer response times, more dispersed eye-movement pattern, and lower eye-movement consistency than young adults during visual search, the two age groups did not differ in the masking effect, suggesting limited contribution from ageing-related cognitive decline. Thus, participants’ pre-saccadic attention shift prior to search may be an important factor influencing their search behavior.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    In a separate analysis, we conducted two separate 2 × 2 ANOVA to test our two hypotheses, i.e., an interaction between age group and stimulus condition, and an interaction between masking group and stimulus condition, and obtained similar results. See Tables A5 to A10 in the Online Supplementary Materials.

  2. 2.

    Similar results were obtained when we did robust correlation analysis by winsorizing the masking effect in RT with a 95% confidence interval: A significant positive correlation between masking effect and overall entropy in the overlap condition, r(78) = .41, p < 0.01.

References

  1. An, J., & Hsiao, J. H. (2021). Modulation of mood on eye movement pattern and performance in face recognition. Emotion, 21(3), 617-630.

  2. Chan, C. Y. H., Chan, A. B., Lee, T. M. C., & Hsiao, J. H. (2018). Eye movement patterns in face recognition are associated with cognitive decline in older adults. Psychonomic Bulletin & Review, 25(6), 2200-2207.

    Article  Google Scholar 

  3. Chan, F. H. F., Barry, T. J., Chan, A. B., & Hsiao, J. H. (2020a). Understanding visual attention to face emotions in social anxiety using hidden Markov models. Cognition & Emotion, 34(8), 1704-1710.

  4. Chan, F. H. F., Jackson, T., Hsiao, J. H., Chan, A. B., & Barry, T. J. (2020b). The interrelation between interpretation biases, threat expectancies and pain-related attentional processing. European Journal of Pain, 24(10), 1956-1967.

  5. Chan, F. H. F., Suen, H., Hsiao, J. H., Chan, A. B., & Barry, T. J. (2020c). Interpretation biases and visual attention in the processing of ambiguous information in chronic pain. European Journal of Pain, 24(7), 1242-1256.

  6. Chiu, C.-W., & Jingling, L. (2014). Focus size of attention: Exploring the focus hypothesis on the collinear masking effect in visual search. Chinese Journal of Psychology, 56(4), 467-484. https://doi.org/10.6129/CJP.20140515

    Article  Google Scholar 

  7. Chiu, C.-W., & Jingling, L. (2015). Temporal characteristics of the collinear masking effect in visual search. Chinese Journal of Psychology, 57(1), 91-107. https://doi.org/10.6129/CJP.20141217

    Article  Google Scholar 

  8. Chow, H. M., Jingling, L., & Tseng, C. H. (2013). Collinear integration affects visual search at V1. Journal of Vision, 13(10), 24-24.

  9. Chuk, T., Chan, A. B., & Hsiao, J. H. (2014). Understanding eye movements in face recognition using hidden Markov models. Journal of Vision, 14(11):8, 1-14.

  10. Chuk, T., Crookes, K., Hayward, W. G., Chan, A. B., & Hsiao, J. H. (2017a). Hidden Markov model analysis reveals the advantage of analytic eye movement patterns in face recognition across cultures. Cognition, 169, 102-117.

    Article  Google Scholar 

  11. Chuk, T., Chan, A. B., & Hsiao, J. H. (2017b). Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling. Vision Research, 141, 204-216.

    Article  Google Scholar 

  12. Chuk, T., Chan, A. B., Shimojo, S., & Hsiao, J. H. (2020). Eye movement analysis with switching hidden Markov models. Behavior Research Methods, 52(3), 1026-1043.

  13. Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory (2nd ed.). Interscience.

  14. Coviello E. Chan A. B. Lanckriet G. R. G. (2014). Clustering hidden Markov models with variational HEM. Journal of Machine Learning Research, 15 (Feb), 697–747.

    Google Scholar 

  15. Dakin, S. C., & Baruch, N. J. (2009). Context influences contour integration. Journal of Vision, 9(2), 13-13.

    Article  Google Scholar 

  16. Einhäuser, W., Spain, M., & Perona, P. (2008). Objects predict fixations better than early saliency. Journal of Vision, 8(14), 18-18.

    Article  Google Scholar 

  17. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189-198.

    Article  Google Scholar 

  18. Gazzaley, A., Cooney, J. W., Rissman, J., & D'esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 1298-1300.

    Article  Google Scholar 

  19. Gersch, T. M., Kowler, E., Schnitzer, B. S., & Dosher, B. A. (2008). Visual memory during pauses between successive saccades. Journal of Vision, 8(16):15, 1-18.

  20. Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. The psychology of learning and motivation, 22, 193-225.

    Article  Google Scholar 

  21. Hong, S. L., & Beck, M. R. (2010) Uncertainty Compensation in Human Attention: Evidence from Response Times and Fixation Durations. PLOS ONE, 5(7), e11461. https://doi.org/10.1371/journal.pone.0011461

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hsiao, J. H., Chan, K. Y., Du, Y., & Chan, A. B. (2019). Understanding Individual Differences in Eye Movement Pattern During Scene Perception through Hidden Markov Modeling. In A.K. Goel, C.M. Seifert, & C. Freksa (Eds.), Proceeding of the 41th Annual Conference of the Cognitive Science Society (pp. 3283). Cognitive Science Society.

  23. Hsiao, J. H., An, J. H., & Chan, A. B. (2020). The role of eye movement consistency in learning to recognise faces: Computational and experimental examinations. In S. Denison., M. Mack, Y. Xu, & B.C. Armstrong (Eds.), Proceedings of the 42nd Annual Conference of the Cognitive Science Society (pp. 1072-1078). Cognitive Science Society.

  24. Hsiao, J. H., An, J., Zheng, Y., & Chan, A. B. (2021a). Do portrait artists have enhanced face processing abilities? Evidence from hidden Markov modeling of eye movements. Cognition, 211, 104616.

  25. Hsiao, J. H., Lan, H., Zheng, Y., & Chan, A. B. (2021b). Eye Movement analysis with Hidden Markov Models (EMHMM) with co-clustering. Behavior Research Methods, 1-14.

  26. Jingling, L., & Tseng, C. H. (2013). Collinearity Impairs Local Element Visual Search. Journal of Experimental Psychology: Human Perception and Performance, 39(1):156-67. https://doi.org/10.1037/a0027325.

    Article  PubMed  Google Scholar 

  27. Jingling L., & Zhaoping L. (2008). Change detection is easier at texture border bars when they are parallel to the border: Evidence for V1 Mechanisms of Bottom-up Salience. Perception, 37(2), 197-206.

    Article  Google Scholar 

  28. Jingling, L., Tseng, C.-H., & Zhaoping, L. (2013a). Orientation is different: Interaction between contour integration and feature contrasts in visual search. Journal of Vision, 13(3), 1–13. https://doi.org/10.1167/13.3.26

    Article  Google Scholar 

  29. Jingling, L., Tan, D.-L., & Tseng, C.-H. (2013b). Salient collinear grouping diminishes local salience in visual search: An eye movement study. Journal of Vision, 13(12), 1–10. DOI https://doi.org/10.1167/13.12.6

    Article  Google Scholar 

  30. Jingling, L., Lu, Y. H., Cheng, M., & Tseng, C. H. (2017). Collinear masking effect in visual search is independent of perceptual salience. Attention, Perception, & Psychophysics, 79(5), 1366-1383.

    Article  Google Scholar 

  31. Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision Research, 35(13), 1897-1916.

    Article  Google Scholar 

  32. Madden, D. J. (2007). Aging and visual attention. Current Directions in Psychological Science, 16(2), 70-74.

    Article  Google Scholar 

  33. Madden, D. J., Parks, E. L., Davis, S. W., Diaz, M. T., Potter, G. G., Chou, Y. H., ... & Cabeza, R. (2014). Age mediation of frontoparietal activation during visual feature search. NeuroImage, 102, 262-274.

  34. Reuter-Lorenz, P. A., & Park, D. C. (2010). Human neuroscience and the aging mind: a new look at old problems. The Journals of Gerontology: Series B, 65(4), 405-415.

    Article  Google Scholar 

  35. Tseng, C. H., & Jingling, L. (2015). A Salient and Task-Irrelevant Collinear Structure Hurts Visual Search. PLoS ONE, 10(4): e0124190.

    Article  Google Scholar 

  36. Turatto, M., & Galfano, G. (2000). Color, form and luminance capture attention in visual search. Vision Research, 40(13), 1639-1643.

    Article  Google Scholar 

  37. Wilder, J. D., Kowler, E., Schnitzer, B. S., Gersch, T. M., & Dosher, B. A. (2009). Attention during active visual tasks: counting, pointing, or simply looking. Vision Research, 49(9), 1017-1031.

    Article  Google Scholar 

  38. Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. Journal of Experimental Psychology: Human perception and performance, 10(5), 601-621.

    PubMed  Google Scholar 

  39. Zhang, J., Chan, A. B., Lau, E. Y. Y., & Hsiao, J. H. (2019). Individuals with insomnia misrecognize angry faces as fearful faces while missing the eyes: an eye-tracking study. Sleep, 42(2), zsy220.

  40. Zhao, M., Gersch, T. M., Schnitzer, B. S., Dosher, B. A., & Kowler, E. (2012). Eye movements and attention: The role of pre-saccadic shifts of attention in perception, memory, and the control of saccades. Vision Research, 74(1), 40-60.

    Article  Google Scholar 

  41. Zhaoping, L. (2014). Understanding vision: theory, models, and data. Oxford University Press.

  42. Zhaoping, L., & Guyader, N. (2007). Interference with bottom-up feature detection by higher-level object recognition. Current Biology, 17(1), 26-31.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the RGC of Hong Kong (#17609117 to Hsiao), the Ministry of Science and Technology of Taiwan (MOST107-2410-H-002-129-MY3 to Yeh and MOST106-2420-H-039-002-MY3 to Jingling). We thank Mr. Da Li for his help with data collection, and the Editor and two anonymous reviewers for helpful comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Li Jingling.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2411 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hsiao, J.H., Chan, A.B., An, J. et al. Understanding the collinear masking effect in visual search through eye tracking. Psychon Bull Rev (2021). https://doi.org/10.3758/s13423-021-01944-7

Download citation

Keywords

  • Eye movements
  • Visual search
  • Attention capture
  • Hidden Markov Models