Hearing hooves, thinking zebras: A review of the inverse base-rate effect

Abstract

People often fail to use base-rate information appropriately in decision-making. This is evident in the inverse base-rate effect, a phenomenon in which people tend to predict a rare outcome for a new and ambiguous combination of cues. While the effect was first reported in 1988, it has recently seen a renewed interest from researchers concerned with learning, attention and decision-making. However, some researchers have raised concerns that the effect arises in specific circumstances and is unlikely to provide insight into general learning and decision-making processes. In this review, we critically evaluate the evidence for and against the main explanations that have been proposed to explain the effect, and identify where this evidence is currently weak. We argue that concerns about the effect are not well supported by the data. Instead, the evidence supports the conclusion that the effect is a result of general mechanisms that provides a useful opportunity to understand the processes involved in learning and decision making. We discuss gaps in our knowledge and some promising avenues for future research, including the relevance of the effect to models of attentional change in learning, an area where the phenomenon promises to contribute new insights.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    Note that where there are multiple instantiations of the design, letters A–C will refer to all cues of the same type. That is, A refers to imperfect predictors, B to perfect predictors of common outcomes, and C to perfect predictors of rare outcomes.

  2. 2.

    The descriptive (e.g., conflicting) and abstract (e.g., BC) labels for these transfer trials are used interchangeably throughout this review.

  3. 3.

    Shanks (1992) notes that A will be a better predictor of the outcomes than a neutral cue, and therefore should not lose all associative strength.

  4. 4.

    While this is possible, O1 responses to AX trials suggest this might not be the case (Don & Livesey, 2017).

  5. 5.

    An unpublished study by Wedell and Kruschke (2001, as cited by Kruschke, 2009) measured likeability ratings in a task where participants used personality traits to predict group membership.

References

  1. Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychologica, 44, 211–33.

    Article  Google Scholar 

  2. Bar-Hillel, M., & Fischhoff, B. (1981). When do base rates affect predictions? Journal of Personality and Social Psychology, 41, 671–80.

    Article  Google Scholar 

  3. Binder, A., & Estes, W. K. (1966). Transfer of response in visual recognition situations as a function of frequency variables. Psychological Monographs, 80 (23, Whole No. 631).

  4. Blanco, F., Baeyens, F., & Beckers, T. (2014). Blocking in human causal learning is affected by outcome assumptions manipulated through causal structure. Learning & Behavior, 42, 185–199.

    Article  Google Scholar 

  5. Blanco, F., Matute, H., & Vadillo, M. A. (2013). Interactive effects of the probability of the cue and the probability of the outcome on the overestimation of null contingency. Learning & Behavior, 41, 333–340.

    Article  Google Scholar 

  6. Blanco, F., & Matute, H. (2019). Base-rate expectations modulate the causal illusion. PloS one, 14, e0212615.

    PubMed  PubMed Central  Article  Google Scholar 

  7. Bohil, C. J., Markman, A. B., & Maddox, T. (2005). A feature-salience analogue of the inverse base-rate effect. The Korean Journal of Thinking & Problem Solving, 15, 17–28.

    Google Scholar 

  8. Burling, J. M., & Yoshida, H. (2016). Highlighting in early childhood: Learning biases through attentional shifting. Cognitive Science, 41, 96–119.

  9. Butt, J. (1988). Frequency judgments in an auditing-related task. Journal of Accounting Research, 26, 315–30.

    Article  Google Scholar 

  10. Casscells, W., Schoenberger, A., & Graboys, T. B. (1978). Interpretation by physicians of clinical laboratory results. New England Journal of Medicine, 299, 999–1001.

    Article  Google Scholar 

  11. Christensen-Szalanski, J. J. J. & Beach, L. R. (1982) Experience and the base-rate fallacy. Organization Behavior and Human Performance, 29, 270-78.

    Article  Google Scholar 

  12. Christensen-Szalanski, J. J. J. & Bushyhead, J. B. (1981). Physicians' use of probabilistic information in a real clinical setting. Journal of Experimental Psychology: Human Perception and Performance, 7, 928–35.

    PubMed  PubMed Central  Google Scholar 

  13. Dennis, S., & Kruschke, J. K. (1998). Shifting attention in cued recall. Australian Journal of Psychology, 50, 131-138.

    Article  Google Scholar 

  14. Denton, S. E., & Kruschke, J. K. (2006). Attention and salience in associative blocking. Learning & Behavior, 34, 285–304.

    Article  Google Scholar 

  15. Dickinson, A., & Burke, J. (1996). Within-compound associations mediate the retrospective revaluation of causality judgements. Quarterly Journal of Experimental Psychology, 37, 397–416.

    Article  Google Scholar 

  16. Dickinson, A., Shanks, D. R., & Evenden, J. L. (1984). Judgement of act-outcome contingency: The role of selective attribution. Quarterly Journal of Experimental Psychology, 36A, 29-50.

    Article  Google Scholar 

  17. Don, H. J., & Livesey, E. J. (2017). Effects of outcome and trial frequency on the inverse base-rate effect. Memory & cognition, 45, 493–507.

    Article  Google Scholar 

  18. Don, H. J. & Livesey, E. J. (2018). Is the blocking effect sensitive to causal model? It depends how you ask. Proceedings of the 40th Annual Conference of the Cognitive Science Society (pp.1633–1638). Madison: Cognitive Science Society

  19. Don, H. J. & Livesey, E. J. (2021). Attention biases in the inverse base-rate effect persist into new learning. The Quarterly Journal of Experimental Psychology. https://doi.org/10.1177/1747021820985522.

  20. Don, H. J., Goldwater, M. B., Otto, A. R., & Livesey, E. J. (2015). Connecting ruleabstraction and model-based choice across disparate learning tasks. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society (pp. 590–595). Pasadena, California: Cognitive Science Society.

    Google Scholar 

  21. Don, H. J., Goldwater, M. B., Otto, A. R., & Livesey, E. J. (2016). Rule abstraction, model-based choice, and cognitive reflection. Psychonomic Bulletin & Review, 23, 1615–1623.

    Article  Google Scholar 

  22. Don, H. J., Beesley, T., & Livesey, E. J. (2019a). Learned predictiveness models predict opposite attention biases in the inverse base-rate effect. Journal of Experimental Psychology: Animal Learning and Cognition, 45, 143.

  23. Don, H. J., Otto, A. R., Cornwall, A. C., Davis, T., & Worthy, D. A. (2019b). Learning reward frequency over reward probability: A tale of two learning rules. Cognition, 193, 104042.

    PubMed  PubMed Central  Article  Google Scholar 

  24. Don, H. J., Goldwater, M. B., Greenaway, J. K., Hutchings, R., & Livesey, E. J. (2020). Relational rule discovery in complex discrimination learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46, 1807–1827.

  25. Fagot, J., Kruschke, J. K., Dépy, D., & Vauclair, J. (1998). Associative learning in baboons (Papio papio) and humans (Homo sapiens): Species differences in learned attention to visual features. Animal Cognition, 1, 123–133.

  26. Gluck, M. A. (1992). Stimulus sampling and distributed representation in adaptive network theories of learning. In A. F. Healy, S. M. Kosslyn, & R. M. Shiffrin (Eds.), Essays in honor of William K. Estes, Vol. 1. From learning theory to connectionist theory; Vol. 2. From learning processes to cognitive processes (pp. 169–199). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  27. Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology: General, 117, 227–247.

    Article  Google Scholar 

  28. Goldwater, M. B., Don, H. J., Krusche, M., & Livesey, E. J. (2018). Relational discovery in category learning. Journal of Experimental Psychology: General.

    Book  Google Scholar 

  29. Granger, K. T., Moran, P. M., Buckley, M. G., & Haselgrove, M. (2016). Enhanced latent inhibition in high schizotypy individuals. Personality and Individual differences, 91, 31-39.

    Article  Google Scholar 

  30. Hamilton, D. L. (Ed.) (1981). Cognitive processes in stereotyping and intergroup behavior. Hillsdale: Erlbaum.

    Google Scholar 

  31. Haselgrove, M., Le Pelley, M. E., Singh, N. K., Teow, H. Q., Morris, R. W., Green, M. J., ... & Killcross, S. (2016). Disrupted attentional learning in high schizotypy: Evidence of aberrant salience. British journal of psychology, 107, 601–624.

  32. Inkster, A., Milton, F., Edmunds, C. E. R., Benattayallah, A., & Wills, A. (2019a) Neural Correlates of the Inverse Base Rate Effect. https://doi.org/10.31234/osf.io/muqrh

  33. Inkster, A., Mitchell, C., Schlegelmilch, R., & Wills, A. (2019b). Effect of a context shift on the inverse base rate effect. https://doi.org/10.31234/osf.io/rpb7x

  34. Johansen, M. K., Fouquet, N., & Shanks, D. R. (2007). Paradoxical effects of base rates and representation in category learning. Memory & Cognition, 35, 1365–1379.

    Article  Google Scholar 

  35. Johansen, M. K., Fouquet, N., & Shanks, D. R. (2010). Featural selective attention, exemplar representation, and the inverse base-rate effect. Psychonomic Bulletin & Review, 17, 637–643.

    Article  Google Scholar 

  36. Jones, P. M., Zaksaite, T., & Mitchell, C. J. (2019). Uncertainty and blocking in human causal learning. Journal of Experimental Psychology: Animal Learning and Cognition, 45, 111.

    Google Scholar 

  37. Juslin, P., Wennerholm, P., & Winman, A. (2001). High-level reasoning and base-rate use: Do we need cue-competition to explain the inverse base-rate effect? Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 849–871.

    PubMed  Google Scholar 

  38. Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological review, 80, 237–251.

    Article  Google Scholar 

  39. Kalish, M. L. (2001). An inverse base rate effect with continuously valued stimuli. Memory & Cognition, 29, 4, 587–597.

    Article  Google Scholar 

  40. Kalish, M. L., & Kruschke, J. K. (2000). The role of attention shifts in the categorization of continuous dimensioned stimuli. Psychological Research, 64, 105–116.

    PubMed  Article  PubMed Central  Google Scholar 

  41. Kamin, L.J. (1969). Selective association and conditioning. In N.J. Mackintosh & W.K. Honig (Eds.), Fundamental issues in associative learning (pp. 4264). Halifax: Dalhousie University Press.

    Google Scholar 

  42. Koehler, J. J. (1996). The base rate fallacy reconsidered: Descriptive, normative, and methodological challenges. Behavioural and Brain Sciences, 19, 1–53.

    Article  Google Scholar 

  43. Kruschke, J. K. (1996). Base rates in category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 3–26.

    PubMed  PubMed Central  Google Scholar 

  44. Kruschke, J. K. (2001a). The inverse base-rate effect is not explained by eliminative inference. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 1385–1400.

    PubMed  PubMed Central  Google Scholar 

  45. Kruschke, J. K. (2001b). Toward a unified model of attention in associative learning. Journal of Mathematical Psychology, 45, 812–863.

    Article  Google Scholar 

  46. Kruschke, J. K. (2003). Attentional theory is a viable explanation of the inverse base rate effect: A reply to Winman, Wennerholm, and Juslin (2003). Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 1396–1400.

    Google Scholar 

  47. Kruschke, J. K. (2005). Learning involves attention. In G. Houghton (Ed.), Connectionist models in cognitive psychology (pp. 113–140). Hove, East Sussex, UK: Psychology Press.

    Google Scholar 

  48. Kruschke, J. K. (2009). Highlighting: A canonical experiment. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 51, pp.153–185).

  49. Kruschke, J. K., Kappenman, E. S., & Hetrick, W. P. (2005). Eye gaze and individual differences consistent with learned attention in associative blocking and highlighting. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 830-845.

    PubMed  PubMed Central  Google Scholar 

  50. Kutzner, F. L., & Fiedler, K. (2015). No correlation, no evidence for attention shift in category learning: Different mechanisms behind illusory correlations and the inverse base-rate effect. Journal of Experimental Psychology: General, 144, 58.

  51. Lamberts, K., & Kent, C. (2007). No evidence for rule-based processing in the inverse base-rate effect. Memory & Cognition, 35, 2097–2105.

    Article  Google Scholar 

  52. Larkin, M. J., Aitken, M. R., & Dickinson, A. (1998). Retrospective revaluation of causal judgments under positive and negative contingencies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 1331.

    Google Scholar 

  53. Lee, J. C., Hayes, B. K., & Lovibond, P. F. (2018). Peak shift and rules in human generalization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 1955–1970.

    PubMed  PubMed Central  Google Scholar 

  54. Le Pelley, M. E. (2004). The role of associative history in models of associative learning: A selective review and a hybrid model. Quarterly Journal of Experimental Psychology Section B, 57, 193–243.

    Article  Google Scholar 

  55. Le Pelley, M. E., & McLaren, I. P. L. (2003). Learned associability and associative change in human causal learning. The Quarterly Journal of Experimental Psychology: B, Comparative and Physiological Psychology, 56, 68–79.

    PubMed  Article  PubMed Central  Google Scholar 

  56. Le Pelley, M. E., Mitchell, C. J., Beesley, T., George, D. N., & Wills, A. J. (2016, August 8). Attention and associative learning in humans: An integrative review. Psychological Bulletin 142, 1111–1140.

    Article  Google Scholar 

  57. Le Pelley, M. E., Schmidt-Hansen, M., Harris, N. J., Lunter, C. M., & Morris, C. S. (2010). Disentangling the attentional deficit in schizophrenia: Pointers from schizotypy. Psychiatry Research, 176, 143–149.

    PubMed  Article  PubMed Central  Google Scholar 

  58. Little, J. L., & McDaniel, M. A. (2015). Individual differences in category learning: Memorization versus rule abstraction. Memory & cognition, 43, 283–297.

    Article  Google Scholar 

  59. Livesey, E. J., Greenaway, J., Schubert, S., & Thorwart, A. (2019). Testing the deductive inferential account of blocking in causal learning. Memory & Cognition, 47, 1120–1132.

    Article  Google Scholar 

  60. Livesey, E., Lee, J., Shone, L. (2013). The relationship between blocking and inference in causal learning. 35th Annual Meeting of the Cognitive Science Society (COGSCI 2013), Austin: Cognitive Science Society.

  61. Lochmann, T., & Wills, A. J. (2003). Predictive history in an allergy prediction task. In Proceedings of EuroCogSci (Vol. 3, pp. 217–222).

    Google Scholar 

  62. Luque, D., Vadillo, M. A., Gutiérrez-Cobo, M. J., & Le Pelley, M. E. (2016). The blocking effect in associative learning involves learned biases in rapid attentional capture. The Quarterly Journal of Experimental Psychology, 1–26.

  63. Luque, D., Cobos, P. L., & López, F. J. (2008). Interference between cues requires a causal scenario: Favorable evidence for causal reasoning models in learning processes. Learning and Motivation, 39(3), 196–208.

    Article  Google Scholar 

  64. Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276–298.

    Article  Google Scholar 

  65. Manis, M., Dovalina, I., Avis, N. E., & Cardoze, S. (1980). Base rates can affect individual predictions. Journal of Personality and Social Psychology, 38(2), 231248.

    Article  Google Scholar 

  66. Markman, A. B. (1989). LMS rules and the inverse base-rate effect: Comment on Gluck and Bower (1988). Journal of Experimental Psychology: General, 118, 417–421.

    Article  Google Scholar 

  67. Matute, H., Blanco, F., Yarritu, I., Díaz-Lago, M., Vadillo, M. A., & Barberia, I. (2015). Illusions of causality: how they bias our everyday thinking and how they could be reduced. Frontiers in psychology, 6, 888.

    PubMed  PubMed Central  Article  Google Scholar 

  68. McDaniel, M. A., Cahill, M. J., Robbins, M., & Wiener, C. (2014). Individual differences in learning and transfer: Stable tendencies for learning exemplars versus abstracting rules. Journal of Experimental Psychology: General, 143, 668–693.

    Article  Google Scholar 

  69. McLaren, I. P., Forrest, C. L. D., McLaren, R. P., Jones, F. W., Aitken, M. R. F., & Mackintosh, N. J. (2014). Associations and propositions: The case for a dualprocess account of learning in humans. Neurobiology of learning and memory, 108, 185–195.

    PubMed  Article  PubMed Central  Google Scholar 

  70. Medin, D. L., & Bettger, J. G., (1991). Sensitivity to changes in base-rate information. The American Journal of Psychology, 104, 311–332.

    Article  Google Scholar 

  71. Medin, D. L., & Edelson, S. M., (1988). Problem structure and the use of base-rate information from experience. Journal of Experimental Psychology: General, 1, 68–85.

    Article  Google Scholar 

  72. Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological review, 85, 207.

    Article  Google Scholar 

  73. Mitchell, C. J., & Le Pelley, M. E. (Eds.). (2010). Attention and associative learning: From brain to behaviour. Oxford University Press, USA.

    Google Scholar 

  74. Mitchell, C. J., Lovibond, P. F., & Gan, C. Y. (2005). A dissociation between causal judgment and outcome recall. Psychonomic bulletin & review, 12, 950–954.

    Article  Google Scholar 

  75. Mitchell, C. J., Lovibond, P. F., Minard, E., & Lavis, Y. (2006). Forward blocking in human learning sometimes reflects the failure to encode a cue–outcome relationship. The Quarterly Journal of Experimental Psychology, 59, 830-844.

    PubMed  Article  Google Scholar 

  76. Mitchell, C. J., Griffiths, O., Seetoo, J., & Lovibond, P. F. (2012). Attentional mechanisms in learned predictiveness. Journal of Experimental Psychology: Animal Behavior Processes, 38, 191.

  77. Nosofsky, R. M. (1984). Choice, similarity, and the context theory of classification. Journal of Experimental Psychology: Learning, memory, and cognition, 10, 104–114.

    PubMed  Google Scholar 

  78. Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization relationship. Journal of experimental psychology: General, 115, 39.

    Article  Google Scholar 

  79. O'Bryan, S. R., Worthy, D. A., Livesey, E. J., & Davis, T. (2018). Model-based fMRI reveals dissimilarity processes underlying base rate neglect. Elife, 7, e36395.

    PubMed  PubMed Central  Article  Google Scholar 

  80. Paskewitz, S., & Jones, M. (2020). Dissecting EXIT. Journal of Mathematical Psychology, 97, 102371.

    Article  Google Scholar 

  81. Pearce, J. M., & Hall, G. (1980). A model for Pavlovian conditioning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87, 532–552.

    Article  Google Scholar 

  82. Pearce, J. M., & Mackintosh, N. J. (2010). Two theories of attention: A review and a possible integration. Attention and associative learning: From brain to behaviour, 11–39.

  83. Posner, M. I. (1980). Orienting of attention. The Quarterly Journal of Experimental Psychology, 32, 3–25.

    Article  Google Scholar 

  84. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.). Classical conditioning II: Current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.

    Google Scholar 

  85. Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain mechanisms (No. VG-1196-G-8). Cornell Aeronautical Lab Inc Buffalo NY.

  86. Shanks, D. R. (1992) Connectionist accounts of the inverse base-rate effect in categorization. Connection Science, 4, 3-18.

    Article  Google Scholar 

  87. Shanks, D. R., & Darby, R. J. (1998). Feature-and rule-based generalization in human associative learning. Journal of Experimental Psychology: Animal Behavior Processes, 24, 405–415.

    Google Scholar 

  88. Sherman, J. W., Kruschke, J. K., Sherman, S. J., Percy, E. J., Petrocelli, J. V., & Conrey, F. R. (2009). Attentional processes in stereotype formation: a common model for category accentuation and illusory correlation. Journal of personality and social psychology, 96, 305–323.

    PubMed  Article  PubMed Central  Google Scholar 

  89. Stewart, N., & Morin, C. (2007). Dissimilarity is used as evidence of category membership in multidimensional perceptual categorization: A test of the similarity–dissimilarity generalized context model. Quarterly Journal of Experimental Psychology, 60, 1337–1346.

  90. Sutherland, N. S., & Mackintosh, N. J. (1971). Mechanisms of animal discrimination learning. New York: Academic Press.

  91. Thorwart, A., & Livesey, E. J. (2016). Three ways that non-associative knowledge may affect associative learning processes. Frontiers in psychology, 7, 2024.

    PubMed  PubMed Central  Article  Google Scholar 

  92. Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive psychology, 5, 207–232.

    Article  Google Scholar 

  93. Tversky, A. & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131.

    PubMed  PubMed Central  Article  Google Scholar 

  94. Van Hamme, L. J., & Wasserman, E. A. (1994). Cue competition in causality judgments: The role of nonpresentation of compound stimulus elements. Learning and motivation, 25, 127–151.

    Article  Google Scholar 

  95. Waldmann, M. R. (2000). Competition among causes but not effects in predictive and diagnostic learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 5376.

    PubMed  PubMed Central  Google Scholar 

  96. Waldmann, M. R. (2001). Predictive versus diagnostic causal learning: Evidence from an overshadowing paradigm. Psychonomic Bulletin & Review, 8, 600–608.

    Article  Google Scholar 

  97. Waldmann, M. R., & Holyoak, K. J. (1992). Predictive and diagnostic learning within causal models: Asymmetries in cue competition. Journal of Experimental Psychology: General, 121, 222236.

    Article  Google Scholar 

  98. Widrow, B., & Hoff, M.E. (1960). Adaptive switching circuits. 1960 WESCON Convention Record Part IV, 96–104.

  99. Wills, A. J., Barrasin, T. J, & McLaren, I. P. L. (2011a). Working memory capacity and generalization in predictive learning. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 3205–3210). Austin: Cognitive Science Society.

    Google Scholar 

  100. Wills, A. J., Graham, S., Koh, Z., McLaren, I. P., & Rolland, M. D. (2011b). Effects of concurrent load on feature-and rule-based generalization in human contingency learning. Journal of Experimental Psychology: Animal Behavior Processes, 37(3), 308–316.

    PubMed  PubMed Central  Google Scholar 

  101. Wills, A. J., Lavric, A., Hemmings, Y., Surrey, E. (2014). Attention, predictive learning, and the inverse base-rate effect: Evidence from event-related potentials. Neuroimage, 87, 61–71.

    PubMed  Article  PubMed Central  Google Scholar 

  102. Winman, A., Wennerholm, P. & Juslin, P. (2003). Can attentional theory explain the inverse base rate effect? Comment on Kruschke (2001). Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 1390–1395.

    PubMed  PubMed Central  Google Scholar 

  103. Winman, A., Wennerholm, P., Juslin, P. & Shanks, D. R. (2005). Evidence for rule-based processes in the inverse base-rate effect. The Quarterly Journal Of Experimental Psychology, 58A, 789–815.

    Article  Google Scholar 

  104. Wood, M. J. (2009). Categorization of partially occluded visual stimuli: bridging the gap between completion and classification (Doctoral dissertation, Dept. of Psychology-Simon Fraser University).

  105. Wood, M. J., & Blair, M. R. (2011). Informed inferences of unknown feature values in categorization. Memory & cognition, 39, 666–674.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hilary J. Don.

Additional information

Open Practices Statement

The data for the questionnaire experiment reported in this review are available at https://osf.io/68guf/. The experiment was not preregistered.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 70 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Don, H.J., Worthy, D.A. & Livesey, E.J. Hearing hooves, thinking zebras: A review of the inverse base-rate effect. Psychon Bull Rev (2021). https://doi.org/10.3758/s13423-020-01870-0

Download citation

Keywords

  • Inverse base-rate effect
  • Human associative learning
  • Attention in learning
  • Decision making