Abstract
The current study investigated category learning across two experiments using face-blend stimuli that formed face families controlled for within- and between-category similarity. Experiment 1 was a traditional feedback-based category-learning task, with three family names serving as category labels. In Experiment 2, the shared family name was encountered in the context of a face-full name paired-associate learning task, with a unique first name for each face. A subsequent test that required participants to categorize new faces from each family showed successful generalization in both experiments. Furthermore, perceived similarity ratings for pairs of faces were collected before and after learning, prior to generalization test. In Experiment 1, similarity ratings increased for faces within a family and decreased for faces that were physically similar but belonged to different families. In Experiment 2, overall similarity ratings decreased after learning, driven primarily by decreases for physically similar faces from different families. The post-learning category bias in similarity ratings was predictive of subsequent generalization success in both experiments. The results indicate that individuals formed generalizable category knowledge prior to an explicit demand to generalize and did so both when attention was directed towards category-relevant features (Experiment 1) and when attention was directed towards individuating faces within a family (Experiment 2). The results tie together research on category learning and categorical perception and extend them beyond a traditional category-learning task.
This is a preview of subscription content, access via your institution.


References
Aizenstein, H., MacDonald, A., Stenger, V., Nebes, R., Larson, J., Ursu, S., & Carter, C. (2000). Complementary category learning systems identified using fMRI. Journal of Cognitive Neuroscience, 12(6), 977–987.
Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0 Annals of the New York Academy of Sciences, 1224(1), 147–161. https://doi.org/10.1111/j.1749-6632.2010.05874.x
Banino, A., Koster, R., Hassabis, D., & Kumaran, D. (2016). Retrieval-based model accounts for striking profile of episodic memory and generalization. Scientific Reports, 6, 1–15. https://doi.org/10.1038/srep31330
Beale, J. M., & Keil, F. C. (1995). Categorical effects in the perception of faces. Cognition, 57, 217–239.
Bozoki, A., Grossman, M., & Smith, E. E. (2006). Can patients with Alzheimer’s disease learn a category implicitly? Neuropsychologia, 44(5), 816–827. https://doi.org/10.1016/j.neuropsychologia.2005.08.001
Cai, D. J., Aharoni, D., Shuman, T., Shobe, J., Biane, J., Song, W., … Silva, A. J. (2016). A shared neural ensemble links distinct contextual memories encoded close in time. Nature, 534(7605), 115–118. https://doi.org/10.1038/nature17955
Carpenter, A. C., & Schacter, D. L. (2017). Flexible retrieval: When true inferences produce false memories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(3), 335–349.
Carpenter, A. C., & Schacter, D. L. (2018). False memories, false preferences: Flexible retrieval mechanisms supporting successful inference bias novel decisions. Journal of Experimental Psychology: General, 147(7), 988–1004. https://doi.org/10.1037/xge0000391
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146
Faul, F., Erdfelder, E., Buchner, A., & Lang, A.G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149
Folstein, J. R., Palmeri, T. J., & Gauthier, I. (2013). Category learning increases discriminability of relevant object dimensions in visual cortex. Cerebral Cortex, 23(4), 814–823. https://doi.org/10.1093/cercor/bhs067
Gabay, Y., Dick, F. K., Zevin, J. D., & Holt, L. L. (2015). Incidental auditory category learning. Journal of Experimental Psychology: Human Perception and Performance, 41(4), 1124–1138. https://doi.org/10.1037/xhp0000073
Gershman, S. J., Schapiro, A. C., Hupbach, A., & Norman, K. A. (2013). Neural context reinstatement predicts memory misattribution. Journal of Neuroscience, 33(20), 8590–8595. https://doi.org/10.1523/JNEUROSCI.0096-13.2013
Goldstone, R. L. (1994a). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology: General, 123(2), 178–200. https://doi.org/10.1037/0096-3445.123.2.178
Goldstone, R. L. (1994b). The role of similarity in categorization: Providing a groundwork. Cognition, 52, 125–157.
Goldstone, R. L., & Hendrickson, A. T. (2010). Categorical perception. Wiley Interdisciplinary Reviews: Cognitive Science, 1(1), 69–78. https://doi.org/10.1002/wcs.26
Goldstone, R. L., & Steyvers, M. (2001). The sensitization and differentiation of dimensions during category learning. Journal of Experimental Psychology: General, 130(1), 116–139.
Goldstone, R. L., Lippa, Y., & Shiffrin, R. M. (2001). Altering object representations through category learning. Cognition, 78(1), 27–43. https://doi.org/10.1016/S0010-0277(00)00099-8
Gureckis, T. M., & Goldstone, R. L. (2008). The Effect of the Internal Structure of Categories on Perception. Proceedings of the 30th Annual Conference of the Cognitive Science Society. https://doi.org/10.4314/jlt.v44i2.71793
Harnad, S. (2006). Categorical Perception. In L. Nadel (Ed.), Encyclopedia of Cognitive Science (pp. 1–5). https://doi.org/10.1002/0470018860.s00490
Hintzman, D. L. (1986). Schema abstraction in a multiple-trace memory model. Psychological Review, 93(4), 411–428.
Homa, D., Cross, J., Cornell, D., Goldman, D., & Shwartz, S. (1973). Prototype abstraction and classification of new instances as a function of number of instances defining the prototype. Journal of Experimental Psychology, 101(1), 116–122. https://doi.org/10.1037/h0035772
Kéri, S., Kálmán, J., Kelemen, O., Benedek, G., & Janka, Z. (2001). Are Alzheimer’s disease patients able to learn visual prototypes? Neuropsychologia, 39(11), 1218–1223. https://doi.org/10.1016/S0028-3932(01)00046-X
Knowlton, B. J., & Squire, L. R. (1993). The learning of categories: Parallel brain systems for item memory and category knowledge. Science, 262, 1747–1749. https://doi.org/10.1126/science.8259522
Kruschke, J. K. (1996). Dimensional relevance shifts in category learning. Connection Science, 8(2), 225–247. https://doi.org/10.1080/095400996116893
Kurtz, K. J. (1996). Category-based similarity. In G. W. Cottrell (Ed.), Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society (p. 290).
Levin, D. T., & Angelone, B. L. (2002). Categorical perception of race. Perception, 31(5), 567–578. https://doi.org/10.1068/p3315
Livingston, K. R., Andrews, J. K., & Harnad, S. (1998). Categorical perception effects induced by category learning. Journal of Experimental Psychology: Learning Memory and Cognition, 24(3), 732–753. https://doi.org/10.1037/0278-7393.24.3.732
Love, B. C. (2002). Comparing supervised and unsupervised category learning. Psychonomic Bulletin & Review, 9(4), 829–835.
Love, B. C., & Medin, D. L. (1998). SUSTAIN: A model of human category learning. Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), 671–676.
Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85(3), 207–238. https://doi.org/10.1037/0033-295X.85.3.207
Medin, D. L., Dewey, G. I., & Murphy, T. D. (1983). Relationships between item and category learning: Evidence that abstraction is not automatic. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4), 607–625. https://doi.org/10.1037/0278-7393.9.4.607
Nosofsky, R M. (1991). Tests of an exemplar model for relating perceptual classification and recognition memory. Journal of Experimental Psychology: Human Perception and Performance, 17(1), 3–27. https://doi.org/10.1037/0096-1523.17.1.3
Nosofsky, R.M., & Zaki, S. R. (1998). Dissociations between categorization and recognition in amnesic and normal individuals. Psychological Science, 9(4), 247–255.
Nosofsky, Robert M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115(1), 39–57. https://doi.org/10.1037/0096-3445.115.1.39
O’Toole, A. J., Harms, J., Snow, S. L., Hurst, D. R., Pappas, M. R., Ayyad, J. H., & Abdi, H. (2005). A video database of moving faces and people. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 812–816. https://doi.org/10.1109/TPAMI.2005.90
Peer, P. (1999). CVL Face Database. Retrieved from Computer Vision Lab, Faculty of Computer and Information Science, University of Ljubljana, Slovenia. website: http://www.lrv.fri.uni-li.si/facedb.html
Poldrack, R., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550. https://doi.org/10.1038/35107080
Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77(3), 353–363.
Pothos, E. M., & Reppa, I. (2014). The fickle nature of similarity change as a result of categorization. Quarterly Journal of Experimental Psychology, 67(12), 2425–2438. https://doi.org/10.1080/17470218.2014.931977
Reber, P. J., Stark, C. E. L., & Squire, L. R. (1998). Contrasting cortical activity associated with category memory and recognition memory. Learning & Memory, 5, 420–428. https://doi.org/10.1101/lm.5.6.420
Reber, P. J., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2003). Dissociating explicit and implicit category knowledge with fMRI. Journal of Cognitive Neuroscience, 15(4), 574–583. https://doi.org/10.1162/089892903321662958
Schlichting, M. L., & Preston, A. R. (2015). Memory integration: Neural mechanisms and implications for behavior. Current Opinion in Behavioral Sciences, 1, 1–8. https://doi.org/10.1016/j.cobeha.2014.07.005
Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015). Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications, 6, 1–10. https://doi.org/10.1038/ncomms9151
Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32(2), 265–278. https://doi.org/10.1016/j.neubiorev.2007.07.010
Shepard, R. N., & Chang, J. J. (1963). Stimulus generalization in the learning of classifications. Journal of Experimental Psychology, 65(1), 94–102. https://doi.org/10.1037/h0043732
Shepard, R. N., Hovland, C. I., & Jenkins, H. M. (1961). Learning and memorization of classifications. Psychological Monographs: General and Applied, 75(13), 1–42. https://doi.org/10.1037/h0093825
Shohamy, D., & Wagner, A. D. (2008). Integrating memories in the human brain: Hippocampal-midbrain encoding of overlapping events. Neuron, 60, 378–389. https://doi.org/10.1016/j.neuron.2008.09.023
Soto, F. A. (2019). Categorization training changes the visual representation of face identity. Attention, Perception, and Psychophysics, 81(5), 1220–1227. https://doi.org/10.3758/s13414-019-01765-w
Soto, F. A., & Wasserman, E. A. (2010). Missing the Forest for the Trees: Object-discrimination Learning Blocks Categorization Learning. Psychological Science, 21(10), 1510–1517. https://doi.org/10.1177/0956797610382125
Wallraven, C., Bülthoff, H. H., Waterkamp, S., van Dam, L., & Gaißert, N. (2014). The eyes grasp, the hands see: Metric category knowledge transfers between vision and touch. Psychonomic Bulletin and Review, 21(4), 976–985. https://doi.org/10.3758/s13423-013-0563-4
Wattenmaker, W. D. (1993). Incidental concept learning, feature frequency, and correlated properties. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(1), 203–222. https://doi.org/10.1037/0278-7393.19.1.203
Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012). Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron, 75(1), 168–179. https://doi.org/10.1016/j.neuron.2012.05.010
Author information
Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ashby, S.R., Bowman, C.R. & Zeithamova, D. Perceived similarity ratings predict generalization success after traditional category learning and a new paired-associate learning task. Psychon Bull Rev 27, 791–800 (2020). https://doi.org/10.3758/s13423-020-01754-3
Published:
Issue Date:
Keywords
- Category learning
- Perceived similarity
- Memory generalization