Perceived similarity ratings predict generalization success after traditional category learning and a new paired-associate learning task

Abstract

The current study investigated category learning across two experiments using face-blend stimuli that formed face families controlled for within- and between-category similarity. Experiment 1 was a traditional feedback-based category-learning task, with three family names serving as category labels. In Experiment 2, the shared family name was encountered in the context of a face-full name paired-associate learning task, with a unique first name for each face. A subsequent test that required participants to categorize new faces from each family showed successful generalization in both experiments. Furthermore, perceived similarity ratings for pairs of faces were collected before and after learning, prior to generalization test. In Experiment 1, similarity ratings increased for faces within a family and decreased for faces that were physically similar but belonged to different families. In Experiment 2, overall similarity ratings decreased after learning, driven primarily by decreases for physically similar faces from different families. The post-learning category bias in similarity ratings was predictive of subsequent generalization success in both experiments. The results indicate that individuals formed generalizable category knowledge prior to an explicit demand to generalize and did so both when attention was directed towards category-relevant features (Experiment 1) and when attention was directed towards individuating faces within a family (Experiment 2). The results tie together research on category learning and categorical perception and extend them beyond a traditional category-learning task.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Aizenstein, H., MacDonald, A., Stenger, V., Nebes, R., Larson, J., Ursu, S., & Carter, C. (2000). Complementary category learning systems identified using fMRI. Journal of Cognitive Neuroscience, 12(6), 977–987.

    PubMed  Article  Google Scholar 

  2. Ashby, F. G., & Maddox, W. T. (2011). Human category learning 2.0 Annals of the New York Academy of Sciences, 1224(1), 147–161. https://doi.org/10.1111/j.1749-6632.2010.05874.x

    PubMed  Article  Google Scholar 

  3. Banino, A., Koster, R., Hassabis, D., & Kumaran, D. (2016). Retrieval-based model accounts for striking profile of episodic memory and generalization. Scientific Reports, 6, 1–15. https://doi.org/10.1038/srep31330

    Article  Google Scholar 

  4. Beale, J. M., & Keil, F. C. (1995). Categorical effects in the perception of faces. Cognition, 57, 217–239.

    PubMed  Article  Google Scholar 

  5. Bozoki, A., Grossman, M., & Smith, E. E. (2006). Can patients with Alzheimer’s disease learn a category implicitly? Neuropsychologia, 44(5), 816–827. https://doi.org/10.1016/j.neuropsychologia.2005.08.001

    PubMed  Article  Google Scholar 

  6. Cai, D. J., Aharoni, D., Shuman, T., Shobe, J., Biane, J., Song, W., … Silva, A. J. (2016). A shared neural ensemble links distinct contextual memories encoded close in time. Nature, 534(7605), 115–118. https://doi.org/10.1038/nature17955

    PubMed  PubMed Central  Article  Google Scholar 

  7. Carpenter, A. C., & Schacter, D. L. (2017). Flexible retrieval: When true inferences produce false memories. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(3), 335–349.

    PubMed  Google Scholar 

  8. Carpenter, A. C., & Schacter, D. L. (2018). False memories, false preferences: Flexible retrieval mechanisms supporting successful inference bias novel decisions. Journal of Experimental Psychology: General, 147(7), 988–1004. https://doi.org/10.1037/xge0000391

    Article  Google Scholar 

  9. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146

    PubMed  Article  Google Scholar 

  10. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149

    PubMed  Article  Google Scholar 

  11. Folstein, J. R., Palmeri, T. J., & Gauthier, I. (2013). Category learning increases discriminability of relevant object dimensions in visual cortex. Cerebral Cortex, 23(4), 814–823. https://doi.org/10.1093/cercor/bhs067

    PubMed  Article  Google Scholar 

  12. Gabay, Y., Dick, F. K., Zevin, J. D., & Holt, L. L. (2015). Incidental auditory category learning. Journal of Experimental Psychology: Human Perception and Performance, 41(4), 1124–1138. https://doi.org/10.1037/xhp0000073

    PubMed  Article  Google Scholar 

  13. Gershman, S. J., Schapiro, A. C., Hupbach, A., & Norman, K. A. (2013). Neural context reinstatement predicts memory misattribution. Journal of Neuroscience, 33(20), 8590–8595. https://doi.org/10.1523/JNEUROSCI.0096-13.2013

    PubMed  Article  Google Scholar 

  14. Goldstone, R. L. (1994a). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology: General, 123(2), 178–200. https://doi.org/10.1037/0096-3445.123.2.178

    Article  Google Scholar 

  15. Goldstone, R. L. (1994b). The role of similarity in categorization: Providing a groundwork. Cognition, 52, 125–157.

    PubMed  Article  Google Scholar 

  16. Goldstone, R. L., & Hendrickson, A. T. (2010). Categorical perception. Wiley Interdisciplinary Reviews: Cognitive Science, 1(1), 69–78. https://doi.org/10.1002/wcs.26

    PubMed  Article  Google Scholar 

  17. Goldstone, R. L., & Steyvers, M. (2001). The sensitization and differentiation of dimensions during category learning. Journal of Experimental Psychology: General, 130(1), 116–139.

    Article  Google Scholar 

  18. Goldstone, R. L., Lippa, Y., & Shiffrin, R. M. (2001). Altering object representations through category learning. Cognition, 78(1), 27–43. https://doi.org/10.1016/S0010-0277(00)00099-8

    PubMed  Article  Google Scholar 

  19. Gureckis, T. M., & Goldstone, R. L. (2008). The Effect of the Internal Structure of Categories on Perception. Proceedings of the 30th Annual Conference of the Cognitive Science Society. https://doi.org/10.4314/jlt.v44i2.71793

  20. Harnad, S. (2006). Categorical Perception. In L. Nadel (Ed.), Encyclopedia of Cognitive Science (pp. 1–5). https://doi.org/10.1002/0470018860.s00490

  21. Hintzman, D. L. (1986). Schema abstraction in a multiple-trace memory model. Psychological Review, 93(4), 411–428.

    Article  Google Scholar 

  22. Homa, D., Cross, J., Cornell, D., Goldman, D., & Shwartz, S. (1973). Prototype abstraction and classification of new instances as a function of number of instances defining the prototype. Journal of Experimental Psychology, 101(1), 116–122. https://doi.org/10.1037/h0035772

    Article  Google Scholar 

  23. Kéri, S., Kálmán, J., Kelemen, O., Benedek, G., & Janka, Z. (2001). Are Alzheimer’s disease patients able to learn visual prototypes? Neuropsychologia, 39(11), 1218–1223. https://doi.org/10.1016/S0028-3932(01)00046-X

    PubMed  Article  Google Scholar 

  24. Knowlton, B. J., & Squire, L. R. (1993). The learning of categories: Parallel brain systems for item memory and category knowledge. Science, 262, 1747–1749. https://doi.org/10.1126/science.8259522

    PubMed  Article  Google Scholar 

  25. Kruschke, J. K. (1996). Dimensional relevance shifts in category learning. Connection Science, 8(2), 225–247. https://doi.org/10.1080/095400996116893

    Article  Google Scholar 

  26. Kurtz, K. J. (1996). Category-based similarity. In G. W. Cottrell (Ed.), Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society (p. 290).

  27. Levin, D. T., & Angelone, B. L. (2002). Categorical perception of race. Perception, 31(5), 567–578. https://doi.org/10.1068/p3315

    PubMed  Article  Google Scholar 

  28. Livingston, K. R., Andrews, J. K., & Harnad, S. (1998). Categorical perception effects induced by category learning. Journal of Experimental Psychology: Learning Memory and Cognition, 24(3), 732–753. https://doi.org/10.1037/0278-7393.24.3.732

    Article  Google Scholar 

  29. Love, B. C. (2002). Comparing supervised and unsupervised category learning. Psychonomic Bulletin & Review, 9(4), 829–835.

    Article  Google Scholar 

  30. Love, B. C., & Medin, D. L. (1998). SUSTAIN: A model of human category learning. Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), 671–676.

  31. Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85(3), 207–238. https://doi.org/10.1037/0033-295X.85.3.207

    Article  Google Scholar 

  32. Medin, D. L., Dewey, G. I., & Murphy, T. D. (1983). Relationships between item and category learning: Evidence that abstraction is not automatic. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(4), 607–625. https://doi.org/10.1037/0278-7393.9.4.607

    Article  Google Scholar 

  33. Nosofsky, R M. (1991). Tests of an exemplar model for relating perceptual classification and recognition memory. Journal of Experimental Psychology: Human Perception and Performance, 17(1), 3–27. https://doi.org/10.1037/0096-1523.17.1.3

    PubMed  Article  Google Scholar 

  34. Nosofsky, R.M., & Zaki, S. R. (1998). Dissociations between categorization and recognition in amnesic and normal individuals. Psychological Science, 9(4), 247–255.

    Article  Google Scholar 

  35. Nosofsky, Robert M. (1986). Attention, similarity, and the identification-categorization relationship. Journal of Experimental Psychology: General, 115(1), 39–57. https://doi.org/10.1037/0096-3445.115.1.39

    Article  Google Scholar 

  36. O’Toole, A. J., Harms, J., Snow, S. L., Hurst, D. R., Pappas, M. R., Ayyad, J. H., & Abdi, H. (2005). A video database of moving faces and people. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 812–816. https://doi.org/10.1109/TPAMI.2005.90

    PubMed  Article  Google Scholar 

  37. Peer, P. (1999). CVL Face Database. Retrieved from Computer Vision Lab, Faculty of Computer and Information Science, University of Ljubljana, Slovenia. website: http://www.lrv.fri.uni-li.si/facedb.html

  38. Poldrack, R., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550. https://doi.org/10.1038/35107080

    PubMed  Article  Google Scholar 

  39. Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77(3), 353–363.

    PubMed  Article  Google Scholar 

  40. Pothos, E. M., & Reppa, I. (2014). The fickle nature of similarity change as a result of categorization. Quarterly Journal of Experimental Psychology, 67(12), 2425–2438. https://doi.org/10.1080/17470218.2014.931977

    Article  Google Scholar 

  41. Reber, P. J., Stark, C. E. L., & Squire, L. R. (1998). Contrasting cortical activity associated with category memory and recognition memory. Learning & Memory, 5, 420–428. https://doi.org/10.1101/lm.5.6.420

    Article  Google Scholar 

  42. Reber, P. J., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2003). Dissociating explicit and implicit category knowledge with fMRI. Journal of Cognitive Neuroscience, 15(4), 574–583. https://doi.org/10.1162/089892903321662958

    PubMed  Article  Google Scholar 

  43. Schlichting, M. L., & Preston, A. R. (2015). Memory integration: Neural mechanisms and implications for behavior. Current Opinion in Behavioral Sciences, 1, 1–8. https://doi.org/10.1016/j.cobeha.2014.07.005

    PubMed  PubMed Central  Article  Google Scholar 

  44. Schlichting, M. L., Mumford, J. A., & Preston, A. R. (2015). Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications, 6, 1–10. https://doi.org/10.1038/ncomms9151

    Article  Google Scholar 

  45. Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32(2), 265–278. https://doi.org/10.1016/j.neubiorev.2007.07.010

    PubMed  Article  Google Scholar 

  46. Shepard, R. N., & Chang, J. J. (1963). Stimulus generalization in the learning of classifications. Journal of Experimental Psychology, 65(1), 94–102. https://doi.org/10.1037/h0043732

    PubMed  Article  Google Scholar 

  47. Shepard, R. N., Hovland, C. I., & Jenkins, H. M. (1961). Learning and memorization of classifications. Psychological Monographs: General and Applied, 75(13), 1–42. https://doi.org/10.1037/h0093825

    Article  Google Scholar 

  48. Shohamy, D., & Wagner, A. D. (2008). Integrating memories in the human brain: Hippocampal-midbrain encoding of overlapping events. Neuron, 60, 378–389. https://doi.org/10.1016/j.neuron.2008.09.023

    PubMed  PubMed Central  Article  Google Scholar 

  49. Soto, F. A. (2019). Categorization training changes the visual representation of face identity. Attention, Perception, and Psychophysics, 81(5), 1220–1227. https://doi.org/10.3758/s13414-019-01765-w

    Article  Google Scholar 

  50. Soto, F. A., & Wasserman, E. A. (2010). Missing the Forest for the Trees: Object-discrimination Learning Blocks Categorization Learning. Psychological Science, 21(10), 1510–1517. https://doi.org/10.1177/0956797610382125

    PubMed  PubMed Central  Article  Google Scholar 

  51. Wallraven, C., Bülthoff, H. H., Waterkamp, S., van Dam, L., & Gaißert, N. (2014). The eyes grasp, the hands see: Metric category knowledge transfers between vision and touch. Psychonomic Bulletin and Review, 21(4), 976–985. https://doi.org/10.3758/s13423-013-0563-4

    PubMed  Article  Google Scholar 

  52. Wattenmaker, W. D. (1993). Incidental concept learning, feature frequency, and correlated properties. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(1), 203–222. https://doi.org/10.1037/0278-7393.19.1.203

    PubMed  Article  Google Scholar 

  53. Zeithamova, D., Dominick, A. L., & Preston, A. R. (2012). Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron, 75(1), 168–179. https://doi.org/10.1016/j.neuron.2012.05.010

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dagmar Zeithamova.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashby, S.R., Bowman, C.R. & Zeithamova, D. Perceived similarity ratings predict generalization success after traditional category learning and a new paired-associate learning task. Psychon Bull Rev 27, 791–800 (2020). https://doi.org/10.3758/s13423-020-01754-3

Download citation

Keywords

  • Category learning
  • Perceived similarity
  • Memory generalization