Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
Google Scholar
Amano, K., Goda, N., Nishida, S., Ejima, Y., Takeda, T., & Ohtani, Y. (2006). Estimation of the timing of human visual perception from magnetoencephalography. The Journal of Neuroscience, 26(15), 3981–3991.
PubMed
PubMed Central
Google Scholar
Anders, R., Alario, F., & van Maanen, L. (2016). The shifted Wald distribution for response time data analysis. Psychological Methods, 21(3), 309.
PubMed
Google Scholar
Boehm, U., Annis, J., Frank, M. J., Hawkins, G. E., Heathcote, A., Kellen, D., & et al. (2018). Estimating across-trial variability parameters of the diffusion decision model: Expert advice and recom mendations. Journal of Mathematical Psychology, 87, 46–75.
Google Scholar
Bompas, A., & Sumner, P. (2011). Saccadic inhibition reveals the timing of automatic and voluntary signals in the human brain. The Journal of Neuroscience, 31(35), 12501–12512.
PubMed
PubMed Central
Google Scholar
Brown, S., & Heathcote, A. (2005). A ballistic model of choice response time. Psychological Review, 112(1), 117.
PubMed
Google Scholar
Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Linear ballistic accumulation. Cognitive Psychology, 57(3), 153–178.
PubMed
Google Scholar
Brown, S. D., Marley, A., Donkin, C., & Heathcote, A. (2008). An integrated model of choices and response times in absolute identification. Psychological Review, 115(2), 396.
PubMed
Google Scholar
Cook, E. P., & Maunsell, J. H. (2002). Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nature Neuroscience, 5(10), 985–994.
PubMed
Google Scholar
Ditterich, J. (2006a). Evidence for time-variant decision making. European Journal of Neuroscience, 24(12), 3628–3641.
Ditterich, J. (2006b). Stochastic models of decisions about motion direction: Behavior and physiology. Neural Networks, 19(8), 981–1012.
Donkin, C., & Brown, S. D. (2018). Response times and decision making. In T. Wixted, & E. J. Wagenmakers (Eds.) The Stevens’ handbook of experimental psychology and cognitive neuroscience. (4th edn.), Vol. 5. New York: Wiley.
Donkin, C., Brown, S. D., Heathcote, A., & Wagenmakers, E.-J. (2011). Diffusion versus linear ballistic accumulation: Different models but the same conclusions about psychological processes? Psychonomic Bulletin & Review, 18(1), 61–69.
Google Scholar
Donkin, C., Heathcote, A., & Brown, S. (2009a). Is the linear ballistic accumulator model really the simplest model of choice response times: A Bayesian model complexity analysis. In 9th international conference on cognitive modeling—ICCM2009. Manchester, UK.
Donkin, C., Heathcote, A., Brown, S., & Andrews, S. (2009b). Non-decision time effects in the lexical decision task. In Proceedings of the 31st annual conference of the cognitive science society. Austin: Cognitive Science Society.
Donsker, M. D. (1951). An invariance principle for certain probability limit theorems. Memoirs of the American Mathematical Society.
Egan, J. P. (1958). Recognition memory and the operating characteristic. USAF Operational Applications Laboratory Technical Note.
Evans, N. J., Tillman, G., & Wagenmakers, E.-J. (in press). Systematic and random sources of variability in perceptual decision-making: Comment on Ratcliff, Voskuilen, and Mckoon (2018). Psychological Review.
Fecteau, J. H., & Munoz, D. P. (2003). Exploring the consequences of the previous trial. Nature Reviews Neuroscience, 4(6), 435.
PubMed
Google Scholar
Geisser, S., & Eddy, W. F. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74(365), 153–160.
Google Scholar
Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–511.
Google Scholar
Gomez, P., Ratcliff, R., & Childers, R. (2015). Pointing, looking at, and pressing keys: A diffusion model account of response modality. Journal of Experimental Psychology: Human Perception and Performance, 41(6), 1515–1523.
PubMed
Google Scholar
Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427.
PubMed
Google Scholar
Hawkins, G. E., Brown, S. D., Steyvers, M., & Wagenmakers, E.-J. (2012). An optimal adjustment procedure to minimize experiment time in decisions with multiple alternatives. Psychonomic Bulletin & Review, 19(2), 339–348.
Google Scholar
Heathcote, A. (2004). Fitting Wald and ex-Wald distributions to response time data: An example using functions for the S-PLUS package. Behavior Research Methods, 36, 678–694.
Google Scholar
Heathcote, A., & Hayes, B. (2012). Diffusion versus linear ballistic accumulation: Different models for response time with different conclusions about psychological mechanisms? Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 66(2), 125–36.
PubMed
Google Scholar
Heathcote, A., Wagenmakers, E. J., & Brown, S. D. (2014). The falsifiability of actual decision-making models.
Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of Experimental Psychology, 4(1), 11–26.
Google Scholar
Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental Psychology, 45(3), 188.
PubMed
Google Scholar
Jones, M., Curran, T., Mozer, M. C., & Wilder, M. H. (2013). Sequential effects in response time reveal learning mechanisms and event representations. Psychological Review, 120(3), 628.
PubMed
Google Scholar
Jones, M., & Dzhafarov, E. N. (2014). Unfalsifiability and mutual translatability of major modeling schemes for choice reaction time. Psychological Review, 121(1), 1.
PubMed
Google Scholar
Laming, D. R. J. (1968) Information theory of choice-reaction times. London: Academic Press.
Google Scholar
Leite, F. P., & Ratcliff, R. (2010). Modeling reaction time and accuracy of multiple-alternative decisions. Attention, Perception, & Psychophysics, 72(1), 246–273.
Google Scholar
Lerche, V., & Voss, A. (2016). Model complexity in diffusion modeling: Benefits of making the model more parsimonious. Frontiers in Psychology, 7.
Link, S. W., & Heath, R. A. (1975). A sequential theory of psychological discrimination. Psychometrika, 40, 77–105.
Google Scholar
Logan, G. D. (1988). Toward an instance theory of automatization. Psychological Review, 95(4), 492.
Google Scholar
Logan, G. D., Van Zandt, T., Verbruggen, F., & Wagenmakers, E.-J. (2014). On the ability to inhibit thought and action: General and special theories of an act of control. Psychological Review, 121(1), 66–95.
PubMed
Google Scholar
Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16(5), 798–817.
Google Scholar
Osth, A. F., Dennis, S., & Heathcote, A. (in press). Likelihood ratio sequential sampling models of recognition memory. Cognitive Psychology.
Osth, A. F., & Farrell, S. (2019). Using response time distributions and race models to characterize primacy and recency effects in free recall initiation. Psychological Review, 126(4), 578.
PubMed
Google Scholar
Purcell, B. A., Heitz, R. P., Cohen, J. Y., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2010). Neurally constrained modeling of perceptual decision making. Psychological Review, 117(4), 1113–1143.
PubMed
PubMed Central
Google Scholar
Purcell, B. A., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2012). From salience to saccades: Multiple-alternative gated stochastic accumulator model of visual search. The Journal of Neuroscience, 32(10), 3433–3446.
PubMed
PubMed Central
Google Scholar
Raab, D. H. (1962). Division of psychology: Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24(5 Series II), 574–590.
PubMed
Google Scholar
Rae, B., Heathcote, A., Donkin, C., Averell, L., & Brown, S. (2014). The hare and the tortoise: Emphasizing speed can change the evidence used to make decisions. Journal of Experimental Psychology: Learning, Memory and Cognition, 40(5), 1226–43.
Google Scholar
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.
Google Scholar
Ratcliff, R. (2002). A diffusion model account of response time and accuracy in a brightness discrimination task: Fitting real data and failing to fit fake but plausible data. Psychonomic Bulletin & Review, 9(2), 278–291.
Google Scholar
Ratcliff, R. (2013). Parameter variability and distributional assumptions in the diffusion model. Psychological Review, 120(1), 281–292.
PubMed
Google Scholar
Ratcliff, R. (2015). Modeling one-choice and two-choice driving tasks. Attention, Perception, & Psychophysics, 77(6), 2134–2144.
Google Scholar
Ratcliff, R., Gomez, P., & McKoon, G. M. (2004). A diffusion model account of the lexical decision task. Psychological Review, 111, 159–182.
PubMed
PubMed Central
Google Scholar
Ratcliff, R., Philiastides, M. G., & Sajda, P. (2009). Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG. Proceedings of the National Academy of Sciences, 106(16), 6539–6544.
Google Scholar
Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347–356.
Google Scholar
Ratcliff, R., & Rouder, J. N. (2000). A diffusion model account of masking in two-choice letter identification. Journal of Experimental Psychology: Human Perception and Performance, 26(1), 127.
PubMed
Google Scholar
Ratcliff, R., Sederberg, P. B., Smith, T. A., & Childers, R. (2016). A single trial analysis of EEG in recognition memory: Tracking the neural correlates of memory strength. Neuropsychologia, 93, 128–141.
PubMed
PubMed Central
Google Scholar
Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111(2), 333–67.
PubMed
PubMed Central
Google Scholar
Ratcliff, R. (2009). Modeling confidence and response time in recognition memory. Psychological Review, 116 (1), 59–83.
PubMed
PubMed Central
Google Scholar
Ratcliff, R., & Starns, J. J. (2013). Modeling confidence judgments, response times, and multiple choices in decision making: Recognition memory and motion discrimination. Psychological Review, 120(3), 697.
PubMed
PubMed Central
Google Scholar
Ratcliff, R., & Strayer, D. (2014). Modeling simple driving tasks with a one-boundary diffusion model. Psychonomic Bulletin & Review, 21(3), 577–589.
Google Scholar
Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaching to dealing with contaminant reaction and parameter variability. Psychonomic Bulletin and Review, 9, 438–481.
PubMed
Google Scholar
Ratcliff, R., & Van Dongen, H. P. (2011). Diffusion model for one-choice reaction-time tasks and the cognitive effects of sleep deprivation. Proceedings of the National Academy of Sciences, 108(27), 11285–11290.
Google Scholar
Ratcliff, R., Van Zandt, T., & McKoon, G. (1999). Connectionist and diffusion models of reaction time. Psychological Review, 106(2), 261.
PubMed
Google Scholar
Ratcliff, R., Voskuilen, C., & McKoon, G. (2018). Internal and external sources of variability in perceptual decision-making. Psychological Review.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.
Google Scholar
Schwarz, W. (2001). The ex-Wald distribution as a descriptive model of response times. Behavior Research Methods, 33(4), 457–469.
Google Scholar
Smith, P. L. (1995). Psychophysically principled models of visual simple reaction time. Psychological Review, 102(3), 567–593.
Google Scholar
Smith, P. L., Ratcliff, R., & McKoon, G. (2014). The diffusion model is not a deterministic growth model: Comment on Jones and Dzhafarov (2014). Psychological Review, 121(4), 679–688.
PubMed
PubMed Central
Google Scholar
Smith, P. L., & Vickers, D. (1988). The accumulator model of two-choice discrimination. Journal of Mathematical Psychology, 32(2), 135–168.
Google Scholar
Starns, J. J. (2014). Using response time modeling to distinguish memory and decision processes in recognition and source tasks. Memory & Cognition, 42(8), 1357–1372.
Google Scholar
Starns, J. J., & Ratcliff, R. (2014). Validating the unequal-variance assumption in recognition memory using response time distributions instead of ROC functions: A diffusion model analysis. Journal of Memory and Language, 70, 36–52.
PubMed
PubMed Central
Google Scholar
Tandonnet, C., Burle, B., Hasbroucq, T., & Vidal, F. (2005). Spatial enhancement of EEG traces by surface Laplacian estimation: Comparison between local and global methods. Clinical Neurophysiology, 116(1), 18–24.
PubMed
Google Scholar
Teller, D. Y. (1984). Linking propositions. Vision Research, 24(10), 1233–1246.
PubMed
Google Scholar
Teodorescu, A. R., & Usher, M. (2013). Disentangling decision models: From independence to competition. Psychological Review, 120(1), 1–38. https://doi.org/10.1037/a0030776
Article
PubMed
Google Scholar
Ter Braak, C. J. (2006). A Markov chain Monte Carlo version of the genetic algorithm differential evolution: Easy Bayesian computing for real parameter spaces. Statistics and Computing, 16(3), 239–249.
Google Scholar
Tillman, G., Osth, A., van Ravenzwaaij, D., & Heathcote, A. (2017). A diffusion decision model analysis of evidence variability in the lexical decision task. Psychonomic Bulletin & Review, 24(6), 1949– 1956. Retrieved from https://doi.org/10.3758/s13423-017-1259-y
Google Scholar
Tillman, G., Strayer, D., Eidels, A., & Heathcote, A. (2017). Modeling cognitive load effects of conversation between a passenger and driver. Attention, Perception, & Psychophysics, 79(6), 1795–1803.
Google Scholar
Townsend, J. T., & Ashby, F. G. (1983). Stochastic modeling of elementary psychological processes. CUP Archive.
Turner, B. M. (2019). Toward a common representational framework for adaptation. Psychological Review, 126 (5), 660.
PubMed
Google Scholar
Turner, B. M., Gao, J., Koenig, S., Palfy, D., & McClelland, J. L. (2017). The dynamics of multimodal integration: The averaging diffusion model. Psychonomic Bulletin & Review, 24(6), 1819–1843.
Google Scholar
Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, M. (2013). A method for efficiently sampling from distributions with correlated dimensions. Psychological Methods, 18(3), 368–84.
PubMed
PubMed Central
Google Scholar
Turner, B. M., van Maanen, L., & Forstmann, B. U. (2015). Informing cognitive abstractions through neuroimaging: The neural drift diffusion model. Psychological Review, 122(2), 312–336.
PubMed
Google Scholar
Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky competing accumulator model. Psychological Review, 108, 550–592.
PubMed
Google Scholar
Usher, M., Olami, Z., & McClelland, J. L. (2002). Hick’s law in a stochastic race model with speed–accuracy tradeoff. Journal of Mathematical Psychology, 46(6), 704–715.
Google Scholar
Van Maanen, L., Grasman, R. P., Forstmann, B. U., Keuken, M. C., Brown, S. D., & Wagenmakers, E.-J. (2012). Similarity and 1399 number of alternatives in the random-dot motion paradigm. Attention, Perception, & Psychophysics, 74(4), 739–753.
Google Scholar
van Ravenzwaaij, D., Donkin, C., & Vandekerckhove, J. (2017). The EZ diffusion model provides a powerful test of simple empirical effects. Psychonomic Bulletin & Review, 24(2), 547–556.
Google Scholar
van Ravenzwaaij, D., Dutilh, G., & Wagenmakers, E.-J. (2012). A diffusion model decomposition of the effects of alcohol on perceptual decision making. Psychopharmacology, 219(4), 1017–1025.
PubMed
Google Scholar
Verdonck, S., & Tuerlinckx, F. (2015). Factoring out non-decision time in choice RT data: Theory and implications. Psychological Review, 123(2), 208–218.
PubMed
Google Scholar
Vidal, F., Burle, B., Grapperon, J., & Hasbroucq, T. (2011). An ERP study of cognitive architecture and the insertion of mental processes: Donders revisited. Psychophysiology, 48(9), 1242–1251.
PubMed
Google Scholar
Wald, A. (1947) Sequential analysis. New York: Wiley.
Google Scholar
Watanabe, S. (2010). Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. The Journal of Machine Learning Research, 11, 3571–3594.
Google Scholar
Woodman, G. F., Kang, M.-S., Thompson, K., & Schall, J. D. (2008). The effect of visual search efficiency on response preparation neurophysiological evidence for discrete flow. Psychological Science, 19(2), 128–136.
PubMed
PubMed Central
Google Scholar