Advertisement

Psychonomic Bulletin & Review

, Volume 26, Issue 5, pp 1641–1649 | Cite as

Illusory contour perception in domestic dogs

  • Sarah-Elizabeth ByosiereEmail author
  • Philippe A. Chouinard
  • Tiffani J. Howell
  • Pauleen C. Bennett
Brief Report

Abstract

One way to better understand how animals visually perceive their environment is to assess the way in which visual information is interpreted and adapted based on preconceptions. Domestic dogs represent a unique species in which to evaluate visual perception as recent findings suggest they may differ from humans and other animal species in terms of their susceptibility to geometric visual illusions. Dogs have demonstrated human-like, reversed, and null susceptibility depending on the type of illusion. To further evaluate how dogs perceive their environment, it is necessary to perform additional assessments of visual perception. One such assessment is the perceptual filling-in of figures, which may be invoked when presented with illusory contours. Six dogs were assessed on their perception of the Ehrenstein illusory contour illusion in a two-choice size-discrimination task. Dogs, as a group, demonstrated equivocal perception of illusory contours. Some individual dogs, however, demonstrated human-like perception of the subjective contours, providing preliminary evidence that this species is capable of perceiving illusory contour illusions, thereby improving the current understanding of canine visual perception capabilities. Additional assessments using alternative illusory contour illusions are needed to clarify these results and identify features that underpin the individual differences observed.

Keywords

Dog Ehrenstein Illusion Perception Illusory contour 

Notes

Acknowledgements

We are grateful to Lynna Feng, Nicholas Rutter, and Jessica Woodhead for their help in previous training processes. We also thank Ron Wheeler for his assistance in the construction and design of our apparatus, and Davis Vorva for his expertise in program design. This study was carried out with the support of a La Trobe University Postgraduate Research Scholarship and a La Trobe University Full Fee Research Scholarship.

Open practices statement

The data and programs for this experiment are available upon request.

References

  1. Banica, T., & Schwarzkopf, D. S. (2016). Induction of Kanizsa contours requires awareness of the inducing context. PLoS One, 11(8), e0161177.  https://doi.org/10.1371/journal.pone.0161177 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bensky, M. K., Gosling, S. D., & Sinn, D. L. (2013). The world from a dog’s point of view: A review and synthesis of dog cognition research. Advances in the Study of Behaviour, 45, 209-406.  https://doi.org/10.1016/B978-0-12-407186-5.00005-7 CrossRefGoogle Scholar
  3. Bravo, M., Blake, R., & Morrison, S. (1988). Cats see subjective contours. Vision Research (28), 861-865.  https://doi.org/10.1016/0042-6989(88)90095-8 CrossRefGoogle Scholar
  4. Byosiere, S.-E., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2019). The effects of physical luminance on colour discrimination in dogs: A cautionary tale. Applied Animal Behaviour Science, 212, 58-65.  https://doi.org/10.1016/j.applanim.2019.01.004 CrossRefGoogle Scholar
  5. Byosiere, S.-E., Feng, L. C., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2017). Relational concept learning in domestic dogs: Performance on a two-choice size discrimination task generalises to novel stimuli. Behavioural Processes  https://doi.org/10.1016/j.beproc.2017.10.009 CrossRefGoogle Scholar
  6. Byosiere, S.-E., Feng, L. C., Rutter, N. J., Woodhead, J. K., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2017). Do dogs see the Ponzo illusion? Animal Behavior and Cognition. 10.26451/abc/04.04.01.2017Google Scholar
  7. Byosiere, S.-E., Feng, L. C., Woodhead, J. K., Rutter, N. J., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2016). Visual perception in domestic dogs: susceptibility to the Ebbinghaus–Titchener and Delboeuf illusions. Animal Cognition, 1–14.  https://doi.org/10.1007/s10071-016-1067-1 CrossRefGoogle Scholar
  8. Byosiere, S.-E., Feng, L. C., Wuister, J., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2018). Do dogs demonstrate susceptibility to a vertically presented Ponzo illusion. Animal Behavior and Cognition, 5(3), 254-267.CrossRefGoogle Scholar
  9. Chouinard, P. A., Noulty, W. A., Sperandio, I., & Landry, O. (2013). Global processing during the Müller-Lyer illusion is distinctively affected by the degree of autistic traits in the typical population. Experimental Brain Research, 230(2), 219-231.  https://doi.org/10.1007/s00221-013-3646-6 CrossRefPubMedGoogle Scholar
  10. Chouinard, P. A., Unwin, K. L., Landry, O., & Sperandio, I. (2016). Susceptibility to optical illusions varies as a function of the autism-spectrum quotient but not in ways predicted by local–global biases. Journal of Autism and Developmental Disorders, 46(6), 2224-2239.  https://doi.org/10.1007/s10803-016-2753-1 CrossRefPubMedGoogle Scholar
  11. Ehrenstein, W. (1987). Modifications of the brightness phenomenon of L. Hermann. In S. Petry & G. E. Meyer (Eds.), The perception of illusory contours (pp. 35-39). New York, NY: Springer New York.CrossRefGoogle Scholar
  12. Fagot, J., & Tomonaga, M. (2001). Effects of element separation on perceptual grouping by humans (Homo sapiens) and chimpanzees (Pan troglodytes): Perception of Kanizsa illusory figures. Animal Cognition, 4(3), 171-177.  https://doi.org/10.1007/s100710100109 CrossRefPubMedGoogle Scholar
  13. Feng, L. C., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2017). Why do animals differ in their susceptibility to geometrical illusions? Psychonomic Bulletin & Review, 24(2), 262-276.  https://doi.org/10.3758/s13423-016-1133-3 CrossRefGoogle Scholar
  14. Freeseman, L. J., Colombo, J., & Coldren, J. T. (1993). Individual differences in infant visual attention: Four-month-olds' discrimination and generalization of global and local stimulus properties. Child Development, 64(4), 1191-1203.CrossRefGoogle Scholar
  15. Fuss, T., Bleckmann, H., & Schluessel, V. (2014). The brain creates illusions not just for us: Sharks (Chiloscyllium griseum) can “see the magic” as well. Frontiers in Neural Circuits, 8, 24.  https://doi.org/10.3389/fncir.2014.00024 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gellermann, L. W. (1933). Chance orders of alternating stimuli in visual discrimination experiments. The Pedagogical Seminary and Journal of Genetic Psychology, 42(1), 206-208.  https://doi.org/10.1080/08856559.1933 CrossRefGoogle Scholar
  17. Gerbino, W., & Salmaso, D. (1987). The effect of amodal completion on visual matching. Acta Psychologica, 65(1), 25-46.  https://doi.org/10.1016/0001-6918(87)90045-X CrossRefPubMedGoogle Scholar
  18. Graham, K. L., Byosiere, S.-E., Feng, L. C., Sanders, M., Bennett, P. C., Caruso, K., . . . White, A. (2018). A forced-choice preferential looking task for the assessment of vision in dogs: pilot study.  https://doi.org/10.1111/jsap.12965 CrossRefGoogle Scholar
  19. Gregory, R. L. (2015). Eye and brain: The psychology of seeing: Princeton university press, Princeton.CrossRefGoogle Scholar
  20. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106.  https://doi.org/10.1113/jphysiol.1962.sp006837 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kandel, E., & Schwartz, J. (2000). Jessell. TM. Principles of Neural Science. In: New York, NY: McGraw Hill.Google Scholar
  22. Kanizsa, G. (1974). Contours without gradients or cognitive contours? Italian Journal of Psychology, 1(1), 93-112.Google Scholar
  23. Kanizsa, G., Renzi, P., Conte, S., Compostela, C., & Guerani, L. (1993). Amodal completion in mouse vision. Perception, 22(6), 713-721.  https://doi.org/10.1068/p220713 CrossRefPubMedGoogle Scholar
  24. Keep, B., Zulch, H. E., & Wilkinson, A. (2018). Truth is in the eye of the beholder: Perception of the Müller-Lyer illusion in dogs. Learning & Behavior, 46(4), 501-512.  https://doi.org/10.3758/s13420-018-0344-z CrossRefGoogle Scholar
  25. McGreevy, P., Grassi, T. D., & Harman, A. M. (2003). A strong correlation exists between the distribution of retinal ganglion cells and nose length in the dog. Brain, Behavior and Evolution, 63(1), 13-22.  https://doi.org/10.1159/000073756 CrossRefGoogle Scholar
  26. Miletto Petrazzini, M. E., Bisazza, A., & Agrillo, C. (2016). Do domestic dogs (Canis lupus familiaris) perceive the Delboeuf illusion? Animal Cognition, 1-8.  https://doi.org/10.1007/s10071-016-1066-2 CrossRefGoogle Scholar
  27. Nayar, K., Franchak, J., Adolph, K., & Kiorpes, L. (2015). From local to global processing: The development of illusory contour perception. Journal of Experimental Child Psychology, 131, 38-55.  https://doi.org/10.1016/j.jecp.2014.11.001 CrossRefPubMedGoogle Scholar
  28. Nieder, A., & Wagner, H. (1999). Perception and neuronal coding of subjective contours in the owl. Nature Neuroscience, 2, 660.  https://doi.org/10.1038/10217 CrossRefPubMedGoogle Scholar
  29. Purghé, F., & Coren, S. (1992). Subjective contours 1900–1990: Research trends and bibliography. Perception & Psychophysics, 51(3), 291-304.  https://doi.org/10.3758/bf03212255 CrossRefGoogle Scholar
  30. Roberts, T., McGreevy, P., & Valenzuela, M. (2010). Human induced rotation and reorganization of the brain of domestic dogs. PLoS One, 5(7), e11946.CrossRefGoogle Scholar
  31. Schumann, F. (1900). Beiträge zur Analyse der Gesichtswahrnehmungen. Erste Abhandlung. Einige Beobachtungen über die Zusammenfassung von Gesichtseindruecken zu Einheiten. Zeitschrift für Psychologie und Physiologie der Sinnesorgan (23), 1–32.Google Scholar
  32. Sovrano, V. A., & Bisazza, A. (2009). Perception of subjective contours in fish. Perception, 38(4), 579-590.  https://doi.org/10.1068/p6121 CrossRefPubMedGoogle Scholar
  33. van Hateren, J. H., Srinivasan, M. V., & Wait, P. B. (1990). Pattern recognition in bees: Orientation discrimination. Journal of Comparative Physiology A, 167(5), 649-654.  https://doi.org/10.1007/BF00192658 CrossRefGoogle Scholar
  34. Wetzels, R., Matzke, D., Lee, M. D., Rouder, J. N., Iverson, G. J., & Wagenmakers, E.-J. (2011). Statistical evidence in experimental psychology:An empirical comparison using 855 t tests. Perspectives on Psychological Science, 6(3), 291-298.  https://doi.org/10.1177/1745691611406923 CrossRefPubMedGoogle Scholar
  35. Wyzisk, K., & Neumeyer, C. (2007). Perception of illusory surfaces and contours in goldfish. Visual Neuroscience, 24(3), 291-298.  https://doi.org/10.1017/S095252380707023X CrossRefPubMedGoogle Scholar
  36. Zimmermann, R. R. (1962). Form generalization in the infant monkey. Journal of Comparative and Physiological Psychology, 55(6), 918-923.  https://doi.org/10.1037/h0042446 CrossRefPubMedGoogle Scholar
  37. Zylinski, S., Darmaillacq, A.-S., & Shashar, N. (2012). Visual interpolation for contour completion by the European cuttlefish (Sepia officinalis) and its use in dynamic camouflage. Proceedings of the Royal Society B: Biological Sciences, 279(1737), 2386.CrossRefGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  1. 1.School of Psychology and Public HealthLa Trobe UniversityBendigoAustralia

Personalised recommendations