*Abu-Obeid, N. (1998). Abstract and scenographic imagery: The effect of environmental form on wayfinding. Journal of Environmental Psychology, 18, 159–173. https://doi.org/10.1006/jevp.1998.0082
Google Scholar
*Acevedo, S. F., Piper, B. J., Craytor, M. J., Benice, T. S., & Raber, J. (2010). Apolipoprotein E4 and sex affect neurobehavioral performance in primary school children. Pediatric Research, 67, 293–299. https://doi.org/10.1203/PDR.0b013e3181cb8e68
PubMed
PubMed Central
Google Scholar
Acredolo, L. P., Pick, H. L., & Olsen, M. G. (1975). Environmental differentiation and familiarity as determinants of children’s memory for spatial location. Developmental Psychology, 11, 495–501. https://doi.org/10.1037/h0076667
Article
Google Scholar
*Allahyar, M. (2003). Individual differences in the use of strategy in spatial orientation: Acquiring route and configural knowledge in virtual environments (Order No. 3090956). Available from ProQuest Dissertations & Theses Global. (305274467)
Allen, G. L., Kirasic, K. C., Siegel, A. W., & Herman, J. F. (1979). Developmental issues in cognitive mapping: The selection and utilization of environmental landmarks. Child Development, 50, 1062–1070. https://doi.org/10.2307/1129332
Article
PubMed
Google Scholar
*Allen, G. L., & Willenborg, L. J. (1998). The need for controlled information processing in the visual acquisition of route knowledge. Journal of Environmental Psychology, 18, 419-427. https://doi.org/10.1006/jevp.1998.0079
Google Scholar
*Allison, C., Redhead, E. S., & Chan, W. (2017). Interaction of task difficulty and gender stereotype threat with a spatial orientation task in a virtual nested environment. Learning and Motivation, 57, 22–35. https://doi.org/10.1016/j.lmot.2017.01.005
Google Scholar
Anooshian, L. J., & Young, D. (1981). Developmental changes in cognitive maps of a familiar neighborhood. Child Development, 52, 341–348. https://doi.org/10.2307/1129248
Article
Google Scholar
*Astur, R. S., Purton, A. J., Zaniewski, M. J., Cimadevilla, J., & Markus, E. J. (2016). Human sex differences in solving a virtual navigation problem. Behavioural Brain Research, 308, 236–243. https://doi.org/10.1016/j.bbr.2016.04.037
PubMed
Google Scholar
Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference. Behavioural Brain Research, 93, 185–190. https://doi.org/10.1016/S0166-4328(98)00019-9
Article
PubMed
Google Scholar
Astur, R. S., Taylor, L. B., Mamelak, A. N., Philpott, L., & Sutherland, R. J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behavioural Brain Research, 132, 77–84. https://doi.org/10.1016/S0166-4328(01)00399-0
Article
PubMed
Google Scholar
Astur, R. S., Tropp, J., Sava, S., Constable, R. T., & Markus, E. J. (2004). Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behavioural Brain Research, 151, 103–115. https://doi.org/10.1016/j.bbr.2003.08.024
Article
PubMed
Google Scholar
*Bakdash, J. Z. (2010). Guided navigation impairs spatial knowledge: Using aids to improve spatial representations (Order No. 3451456). Available from ProQuest Dissertations & Theses Global. (862324878)
Barkley, C. L., & Gabriel, K. I. (2007). Sex differences in cue perception in a visual scene: Investigation of cue type. Behavioral Neuroscience, 121, 291–300. https://doi.org/10.1037/0735-7044.121.2.291
Article
PubMed
Google Scholar
*Barrash, J. (1994). Age-related decline in route learning Developmental Neuropsychology, 10, 189-201. https://doi.org/10.1080/87565649409540578
Google Scholar
*Baskaya, A., Wilson, C., & Özcan, Y. Z. (2004). Wayfinding in an unfamiliar environment: Different spatial settings of two polyclinics. Environment and Behavior, 36, 839–867. https://doi.org/10.1177/0013916504265445
Google Scholar
*Basten, K., Meilinger, T., & Mallot, H. A. (2012). Mental travel primes place orientation in spatial recall. In C. Stachniss, K. Schill, & D. Uttal (Eds.), Spatial cognition VIII: Lecture notes in computer science (Vol. 7463, pp. 378–385). Berlin, Germany: Springer.
Bateman, I., & Jones, L.P. (2003). Contrasting conventional with multi-level modeling approaches to meta-analysis: Expectation consistency in UK woodland recreation values. Land Economics, 79, 235–258. https://doi.org/10.2037/3146869
Article
Google Scholar
*Blacker, K. J., Weisberg, S. M., Newcombe, N. S., & Courtney, S. M. (2017). Keeping track of where we are: Spatial working memory in navigation. Visual Cognition, 25, 691–702. https://doi.org/10.1080/13506285.2017.1322652
PubMed
PubMed Central
Google Scholar
*Blanch, R. J., Brennan, D., Condon, B., Santosh, C., & Hadley, D. (2004). Are there gender-specific neural substrates of route learning from different perspectives?. Cerebral Cortex, 14, 1207-1213. https://doi.org/10.1093/cercor/bhh081
PubMed
Google Scholar
Boccia, M., Nemmi, F., & Guariglia, C. (2014). Neuropsychology of environmental navigation in humans: Review and meta-analysis of FMRI studies in healthy participants. Neuropsychology Review, 24, 236–251. https://doi.org/10.1007/s11065-014-9247-8
Article
PubMed
PubMed Central
Google Scholar
*Boone, A. P., Gong, X., & Hegarty, M. (2018). Sex differences in navigation strategy and efficiency. Memory & Cognition, 46, 909–922. https://doi.org/10.3758/s13421-018-0811-y
Google Scholar
Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. (2009). Introduction to meta-analysis. https://doi.org/10.1002/9780470743386
*Bosco, A., Longoni, A. M., & Vecchi, T. (2004). Gender effects in spatial orientation: Cognitive profiles and mental strategies. Applied Cognitive Psychology: The Official Journal of the Society for Applied Research in Memory and Cognition, 18, 519–532. https://doi.org/10.1002/acp.1000
PubMed
PubMed Central
Google Scholar
Brake, W. G., & Lacasse, J. M. (2018). Sex differences in spatial navigation: The role of gonadal hormones. Current opinion in behavioral sciences, 23, 176–182. https://doi.org/10.1016/j.cobeha.2018.08.002
Article
Google Scholar
*Broadbent, H. J., Farran, E. K., & Tolmie, A. (2014). Egocentric and allocentric navigation strategies in Williams syndrome and typical development. Developmental Science, 17, 920–934. https://doi.org/10.1111/desc.12176
PubMed
Google Scholar
*Broadbent, H. J., Farran, E. K., & Tolmie, A. (2015). Sequential egocentric navigation and reliance on landmarks in Williams syndrome and typical development. Frontiers in Psychology, 6, 216. https://doi.org/10.3389/fpsyg.2015.00216
*Brunyé, T. T., Gardony, A., Mahoney, C. R., & Taylor, H. A. (2012). Going to town: Visualized perspectives and navigation through virtual environments. Computers in Human Behavior, 28, 257–266. https://doi.org/10.1016/j.chb.2011.09.008
Google Scholar
*Burigat, S., & Chittaro, L. (2007). Navigation in 3D virtual environments: Effects of user experience and location-pointing navigation aids. International Journal of Human-Computer Studies, 65, 945–958. https://doi.org/10.1016/j.ijhcs.2007.07.003
Google Scholar
*Burkitt, J., Widman, D., & Saucier, D. M. (2007). Evidence for the influence of testosterone in the performance of spatial navigation in a virtual water maze in women but not in men. Hormones and Behavior, 51, 649–654. https://doi.org/10.1016/j.yhbeh.2007.03.007
PubMed
Google Scholar
*Burte, H., & Montello, D. R. (2017). How sense-of-direction and learning intentionality relate to spatial knowledge acquisition in the environment. Cognitive Research: Principles and Implications, 2, 18. https://doi.org/10.1186/s41235-017-0057-4
Cánovas, R., García, R. F., & Cimadevilla, J. M. (2011). Effect of reference frames and number of cues available on the spatial orientation of males and females in a virtual memory task. Behavioural Brain Research, 216, 116–121. https://doi.org/10.1016/j.bbr.2010.07.026
Article
PubMed
Google Scholar
*Cashdan, E., Marlowe, F. W., Crittenden, A., Porter, C., & Wood, B. M. (2012). Sex differences in spatial cognition among Hadza foragers. Evolution and Human Behavior, 33, 274–284. https://doi.org/10.1016/j.evolhumbehav.2011.10.005
Google Scholar
*Castelli, L., Corazzini, L. L., & Geminiani, G. C. (2008). Spatial navigation in large-scale virtual environments: Gender differences in survey tasks. Computers in Human Behavior, 24, 1643–1667. https://doi.org/10.1016/j.chb.2007.06.005
Google Scholar
Chai, X. J., & Jacobs, L. F. (2009). Sex differences in directional cue use in a virtual landscape. Behavioral Neuroscience, 123, 276-283. https://doi.org/10.1037/a0014722
Article
PubMed
Google Scholar
*Chai, X. J., & Jacobs, L. F. (2010). Effects of cue types on sex differences in human spatial memory. Behavioural Brain Research, 208, 336-342. https://doi.org/10.1016/j.bbr.2009.11.039
PubMed
Google Scholar
*Chamizo, V. D., Artigas, A. A., Sansa, J., & Banterla, F. (2011). Gender differences in landmark learning for virtual navigation: The role of distance to a goal. Behavioural Processes, 88, 20–26. https://doi.org/10.1016/j.beproc.2011.06.007
PubMed
Google Scholar
*Chen, C. H., Chang, W. C., & Chang, W. T. (2009). Gender differences in relation to wayfinding strategies, navigational support design, and wayfinding task difficulty. Journal of Environmental Psychology, 29, 220–226. https://doi.org/10.1016/j.jenvp.2008.07.003
Google Scholar
*Choi, J., McKillop, E., Ward, M., & L’Hirondelle, N. (2006). Sex-specific relationships between route-learning strategies and abilities in a large-scale environment. Environment and Behavior, 38, 791–801. https://doi.org/10.1177/0013916506287004
Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd). Hillsdale: Erlbaum.
Google Scholar
Coluccia, E., & Louse, G. (2004). Gender differences in spatial orientation: A review. Journal of Environmental Psychology, 24, 329–340. https://doi.org/10.1016/j.envp.2004.08.006
Article
Google Scholar
*Coluccia, E., Iosue, G., & Brandimonte, M. A. (2007). The relationship between map drawing and spatial orientation abilities: A study of gender differences. Journal of Environmental Psychology, 27, 135-144. https://doi.org/10.1016/j.jenvp.2006.12.005
Google Scholar
*Corbin, I. R. (2014). Sex differences in wayfinding in a life-sized, multi-level environment (Unpublished dissertation). Royal Military College of Canada, Kingston.
*Cornell, E. H., Heth, C. D., & Broda, L. S. (1989). Children’s wayfinding: Response to instructions to use environmental landmarks. Developmental Psychology, 25, 755–764. https://doi.org/10.1037/0012-1649.25.5.755
Google Scholar
*Cornell, E. H., Heth, C. D., & Rowat, W. L. (1992). Wayfinding by children and adults: Response to instructions to use look-back and retrace strategies. Developmental Psychology, 28, 328–336. https://doi.org/10.1037/0012-1649.28.2.328
Google Scholar
Coutrot, A., Silva, R., Manley, E., De Cothi, W., Sami, S., Bohbot, V. D., . . . Spiers, H. J. (2018) Global determinants of navigation ability. Current Biology, 28(17), 2861–2866.
PubMed
Google Scholar
Cubukcu, E., & Nasar, J. L. (2005). Relation of physical form to spatial knowledge in largescale virtual environments. Environment and Behavior, 37, 397-417. https://doi.org/10.1177/0013916504269748
Article
Google Scholar
*Cutmore, T. R., Hine, T. J., Maberly, K. J., Langford, N. M., & Hawgood, G. (2000). Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies, 53, 223–249. https://doi.org/10.1006/ijhc.2000.0389
Google Scholar
Dabbs, J. M., Jr, Chang, E. L., Strong, R. A., & Milun, R. (1998). Spatial ability, navigation strategy, and geographic knowledge among men and women. Evolution and Human Behavior, 19, 89–98. https://doi.org/10.1016/S1090-5138(97)00107-4
Article
Google Scholar
*Dahmani, L., Ledoux, A. A., Boyer, P., & Bohbot, V. D. (2012). Wayfinding: The effects of large displays and 3-D perception. Behavior Research Methods, 44, 447–454. https://doi.org/10.3758/s13428-011-0158-9
Google Scholar
Daugherty, A. M., Bender, A. R., Yuan, P., & Raz, N. (2015). Changes in search path complexity and length during learning of a virtual water maze: Age differences and differential associations with hippocampal subfield volumes. Cerebral Cortex, 26, 2391-2401. https://doi.org/10.1093/cercor/bhv061
Article
PubMed
PubMed Central
Google Scholar
*Daugherty, A. M., & Raz, N. (2017). A virtual water maze revisited: Two-year changes in navigation performance and their neural correlates in healthy adults. NeuroImage, 146, 492–506. https://doi.org/10.1016/j.neuroimage.2016.09.044
PubMed
Google Scholar
*Davies, C. (2002). When is a map not a map? Task and language in spatial interpretation with digital map displays. Applied Cognitive Psychology, 16, 273–285. https://doi.org/10.1002/acp.786
Google Scholar
Davis, H. E., & Cashdan, E. (in press). Spatial cognition, navigation, and mobility among children in a forager-horticulturalist population, the Tsimane of Bolivia. Cognitive Development.
*Devlin, A. S., & Bernstein, J. (1995). Interactive wayfinding: Use of cues by men and women. Journal of Environmental Psychology, 15, 23–38. https://doi.org/10.1016/0272-4944(95)90012-8
Google Scholar
*Driscoll, I., Hamilton, D. A., Yeo, R. A., Brooks, W. M., & Sutherland, R. J. (2005). Virtual navigation in humans: The impact of age, sex, and hormones on place learning. Hormones and Behavior, 47, 326–335. https://doi.org/10.1016/jyhbeh.2004.11.013
*Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 455–463. https://doi.org/10.1111/j.0006-341X.2000.00455.x
PubMed
Google Scholar
Dweck, C. S. (1986). Motivational processes affecting learning. American Psychologist, 41, 1040–1048. https://doi.org/10.1037/0003-066X.41.10.1040
Article
Google Scholar
Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315, 629–634. https://doi.org/10.1136/bmj.315.7109.629
Article
PubMed
PubMed Central
Google Scholar
*Farran, E. K., Courbois, Y., Van Herwegen, J., & Blades, M. (2012a). How useful are landmarks when learning a route in a virtual environment? Evidence from typical development and Williams syndrome. Journal of Experimental Child Psychology, 111, 571–586. https://doi.org/10.1016/j.jecp.2011.10.009
PubMed
Google Scholar
*Farran, E. K., Courbois, Y., Van Herwegen, J., Cruickshank, A. G., & Blades, M. (2012b). Colour as an environmental cue when learning a route in a virtual environment: Typical and atypical development. Research in Developmental Disabilities, 33, 900–908. https://doi.org/10.1016/j.ridd.2011.11.017
PubMed
Google Scholar
*Farran, E. K., Formby, S., Daniyal, F., Holmes, T., & Van Herwegen, J. (2016). Route-learning strategies in typical and atypical development; eye tracking reveals atypical landmark selection in Williams syndrome. Journal of Intellectual Disability Research, 60, 933–944. https://doi.org/10.1111/jir.12331
PubMed
Google Scholar
*Farran, E. K., Purser, H. R., Courbois, Y., Ballé, M., Sockeel, P., Mellier, D., & Blades, M. (2015). Route knowledge and configural knowledge in typical and atypical development: A comparison of sparse and rich environments. Journal of Neurodevelopmental Disorders, 7, 37. https://doi.org/10.1186/s11689-015-9133-6
Feingold, A. (1988). Cognitive gender differences are disappearing. American Psychologist, 43, 95–103. https://doi.org/10.1037/0003-066X.43.2.95
Article
Google Scholar
*Ferguson, A. M., Maloney, E. A., Fugelsang, J., & Risko, E. F. (2015). On the relation between math and spatial ability: The case of math anxiety. Learning and Individual Differences, 39, 1–12. https://doi.org/10.1016/j.lindif.2015.02.007
Google Scholar
*Gagnon, K. T., Cashdan, E. A., Stefanucci, J. K., & Creem-Regehr, S. H. (2016). Sex differences in exploration behavior and the relationship to harm avoidance. Human Nature, 27, 82–97. https://doi.org/10.1007/s12110-015-9248-1
Google Scholar
*Gagnon, K. T., Thomas, B. J., Munion, A., Creem-Regehr, S. H., Cashdan, E. A., & Stefanucci, J. K. (2018). Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition, 180, 108–117. https://doi.org/10.1016/j.cognition.2018.06.020
PubMed
Google Scholar
*Galati, A., Weisberg, S., Newcombe, N., & Avraamides, M. N. (2015). Individual differences in spatial ability influence the effect of gesturing on navigation and spatial memory. Proceedings of Gesture and Speech in Interaction–4th edition (GESPIN 4), 119–124.
*Galati, A., Weisberg, S. M., Newcombe, N. S., & Avraamides, M. N. (2018). When gestures show us the way: Co-thought gestures selectively facilitate navigation and spatial memory. Spatial Cognition & Computation, 18, 1–30. https://doi.org/10.1080/13875868.2017.1332064
Google Scholar
*Galea, L. A., & Kimura, D. (1993). Sex differences in route-learning. Personality and Individual Differences, 14, 53–65. https://doi.org/10.1016/0191-8869(93)90174-2
Google Scholar
*Glicksohn, J., Balmor-Braun, I., Bar-Ziv, J., & Myslobodsky, M. S. (1998). Is spatial orientation influenced by the calcification of intracranial structures?. International Journal of Neuroscience, 96, 73–85. https://doi.org/10.3109/00207459808986459
Google Scholar
*Goldiez, B. F. (2004). Techniques for assessing and improving performance in navigation and wayfinding using mobile augmented reality. Dissertation Abstracts International, 66(02).
Gregoire, C. (2015). Study says that men have the better sense of direction. Huffington Post, Retrieved from https://www.huffingtonpost.com/entry/men-women-navigation-study_us_5665b14ce4b08e945ff01357
*Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3, 404–408. https://doi.org/10.1038/73980
PubMed
Google Scholar
*Grübel, J., Thrash, T., Hölscher, C., & Schinazi, V. R. (2017). Evaluation of a conceptual framework for predicting navigation performance in virtual reality. PLOS ONE, 12, e0184682. https://doi.org/10.1371/journal.pone.0184682
PubMed
PubMed Central
Google Scholar
*Gugerty, L., & Brooks, J. (2004). Reference-frame misalignment and cardinal direction judgments: Group differences and strategies. Journal of Experimental Psychology: Applied, 10, 75–88. https://doi.org/10.1037/1076-898X.10.2.75
PubMed
Google Scholar
*Hamburger, K., & Röser, F. (2014). The role of landmark modality and familiarity in human wayfinding. Swiss Journal of Psychology, 73, 205–213. https://doi.org/10.1024/1421-0185/a000139
Google Scholar
*Hamilton, D. A., & Sutherland, R. J. (1999). Blocking in human place learning: Evidence from virtual navigation. Psychobiology, 27, 453–461. https://doi.org/10.3758/BF03332140
*Hardt, O., Hupbach, A., & Nadel, L. (2009). Factors moderating blocking in human place learning: The role of task instructions. Learning & Behavior, 37, 42–59. https://doi.org/10.3758/LB.37.1.42
Google Scholar
*Harrison, C. R. (2000). Gender and menstrual cycle effects in human spatial cognition (Order No. 9971089). Available from ProQuest Dissertations & Theses Global. (304599985)
*Head, D., & Isom, M. (2010). Age effects on wayfinding and route learning skills. Behavioural Brain Research, 209, 49–58. https://doi.org/10.1016/j.bbr.2010.01.012
PubMed
Google Scholar
*Hedge, C., Weaver, R., & Schnall, S. (2017). Spatial learning and wayfinding in an immersive environment: The digital fulldome. Cyberpsychology, Behavior, and Social Networking, 20, 327–333. https://doi.org/10.1089/cyber.2016.0399
Google Scholar
Hedges, L. V., & Becker, B. J. (1986). Statistical methods in the meta-analysis of research on gender differences. In J. S. Hyde & M. C. Linn (Eds.), The psychology of gender: Progress through meta-analysis. Baltimore: The Johns Hopkins University Press.
Google Scholar
*Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34, 151–176. https://doi.org/10.1016/j.intell.2005.09.005
Google Scholar
*Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30, 425–447. https://doi.org/10.1016/S0160-2896(02)00116-2
Google Scholar
Heil, M., & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones?. Quarterly Journal of Experimental Psychology, 61(5), 683–689.
Google Scholar
*Hemmer, I., Hemmer, M., Neidhardt, E., Obermaier, G., Uphues, R., & Wrenger, K. (2015). The influence of children’s prior knowledge and previous experience on their spatial orientation skills in an urban environment. Education, 3(13), 43, 184–196. https://doi.org/10.1080/03004279.2013.794852
Google Scholar
Herman, J. F., Kail, R. V., & Siegel, A. W. (1979). Cognitive maps of a college campus: A new look at freshman orientation. Bulletin of the Psychonomic Society, 13, 183–186. https://doi.org/10.3758/BF033350
Article
Google Scholar
*Heth, C. D., Cornell, E. H., & Alberts, D. M. (1997). Differential use of landmarks by 8- and 12-year-old children during route reversal navigation. Journal of Environmental Psychology, 17, 199–213. https://doi.org/10.1003/jevp.1997.0057
*Holding, C. S., & Holding, D. H. (1989). Acquisition of route network knowledge by males and females. The Journal of General Psychology, 116, 29–41. https://doi.org/10.1080/00221309.1989.9711108
Google Scholar
*Hölscher, C., Büchner, S. J., Meilinger, T., & Strube, G. (2009). Adaptivity of wayfinding strategies in a multi-building ensemble: The effects of spatial structure, task requirements, and metric information. Journal of Environmental Psychology, 29, 208–219. https://doi.org/10.1016/j.jenvp.2008.05.010
Google Scholar
*Hölscher, C., Tenbrink, T., & Wiener, J. M. (2011). Would you follow your own route description? Cognitive strategies in urban route planning. Cognition, 121, 228-247. https://doi.org/10.1016/j.cognition.2011.06.005
PubMed
Google Scholar
*Honda, A., & Nihei, Y. (2004). Sex differences in wayfinding behavior using well-or poorly-written route descriptions. Tohoku Psychologica Folia, 63, 15–24.
Huang, X., & Voyer, D. (2017). Timing and sex effects on the “Spatial Orientation Test”: A World War II map reading test. Spatial Cognition & Computation, 17, 251–272. https://doi.org/10.1080/13875868.2017.1319836
Article
Google Scholar
*Hund, A. M. (2016). Visuospatial working memory facilitates indoor wayfinding and direction giving. Journal of Environmental Psychology, 45, 233-238. https://doi.org/10.1016/j.jenvp.2016.01.008
Google Scholar
*Hund, A. M., & Gill, D. M. (2014). What constitutes effective wayfinding directions: The interactive role of descriptive cues and memory demands. Journal of Environmental Psychology, 38, 217–224. https://doi.org/10.1016/j.jenvp.2014.02.006
Google Scholar
*Hund, A. M., & Minarik, J. L. (2006). Getting from here to there: Spatial anxiety, wayfinding strategies, direction type, and wayfinding efficiency. Spatial Cognition and Computation, 6, 179–201. https://doi.org/10.1207/s15427633scc0603_1
Google Scholar
*Hund, A. M., & Nazarczuk, S. N. (2009). The effects of sense of direction and training experience on wayfinding efficiency. Journal of Environmental Psychology, 29, 151–159. https://doi.org/10.1016/j.jenvp.2008.05.009
Google Scholar
*Hund, A. M., & Padgitt, A. J. (2010). Direction giving and following in the service of wayfinding in a complex indoor environment. Journal of Environmental Psychology, 30, 553–564. https://doi.org/10.1016/j.jenvp.2010.01.002
Google Scholar
*Ishikawa, T., Fujiwara, H., Imai, O., & Okabe, A. (2008). Wayfinding with a GPS-based mobile navigation system: A comparison with maps and direct experience. Journal of Environmental Psychology, 28, 74–82. https://doi.org/10.1016/j.jenvp.2007.09.002
Google Scholar
*Ishikawa, T., & Kiyomoto, M. (2008). Turn to the left or to the west: Verbal navigational directions in relative and absolute frames of reference. In T. J. Cova, H. J. Miller, K. Beard, A. U. Frank, & M. F. Goodchild (Eds.), International Conference on Geographic Information Science (pp. 119–132). Berlin, Germany: Springer,
*Ishikawa, T., & Montello, D. R. (2006). Spatial knowledge acquisition from direct experience in the environment: Individual differences in the development of metric knowledge and the integration of separately learned places. Cognitive Psychology, 52, 93–129. https://doi.org/10.1016/j.cogpsych.2005.08.003
PubMed
Google Scholar
*Ishikawa, T., & Takahashi, K. (2014). Relationships between methods for presenting information on navigation tools and users’ wayfinding behavior. Cartographic Perspectives, 75, 17–28. https://doi.org/10.14714/CP75.82
*Jansen, P., Schmelter, A., & Heil, M. (2010). Spatial knowledge acquisition in younger and elderly adults. Experimental Psychology, 57, 54–60. https://doi.org/10.1027/1618-3169/a000007
PubMed
Google Scholar
*Jansen-Osmann, P., & Fuchs, P. (2006). Wayfinding behavior and spatial knowledge of adults and children in a virtual environment: The role of landmarks. Experimental Psychology, 53, 171-181. https://doi.org/10.1027/1618-3169.53.3.171
PubMed
Google Scholar
*Jansen-Osmann, P., Schmid, J., & Heil, M. (2007). Wayfinding behavior and spatial knowledge of adults and children in a virtual environment: The role of the environmental structure. Swiss Journal of Psychology, 66, 41-50. https://doi.org/10.1024/1421-0185.66.1.41
Google Scholar
*Jansen-Osmann, P., & Wiedenbauer, G. (2004). Wayfinding performance in and the spatial knowledge of a color-coded building for adults and children. Spatial Cognition and Computation, 4, 337-358. https://doi.org/10.1207/s15427633scc0404_3
Google Scholar
Jonasson, Z. (2005). Meta-analysis of sex differences in rodent models of learning and memory: A review of behavioral and biological data. Neuroscience and Biobehavioral Reviews, 28, 811–825. https://doi.org/10.1016/j.neubiorev.2004.10.006
Article
PubMed
Google Scholar
Kastens, K. A., & Liben, L. S. (2007). Eliciting self-explanations improves children’s performance on a field-based map skills task. Cognition and Instruction, 25(1), 45–74.
Google Scholar
*Kirasic, K. C., Allen, G. L., & Siegel, A. W. (1984). Expression of configurational knowledge of large-scale environments: Students’ performance of cognitive tasks. Environment and Behavior, 16, 687–712. https://doi.org/10.1177/0013916584166002
Google Scholar
Knierim, J. J., & Hamilton, D. A. (2011). Framing spatial cognition: Neural representations of proximal and distal frames of reference and their roles in navigation. Physiological Reviews, 91, 1245–1279. https://doi.org/10.1152/physrev.00021.2010
Article
PubMed
Google Scholar
*Kober, S. E., & Neuper, C. (2011). Sex differences in human EEG theta oscillations during spatial navigation in virtual reality. International Journal of Psychophysiology, 79, 347-355. https://doi.org/10.1016/j.ijpsycho.2010.12.002
PubMed
Google Scholar
*Kong, X. Z., Pu, Y., Wang, X., Xu, S., Hao, X., Zhen, Z., & Liu, J. (2017). Intrinsic hippocampal-caudate interaction correlates with human navigation. BioRxiv, 116129. https://doi.org/10.1101/116129
*Korthauer, L. E., Nowak, N. T., Frahmand, M., & Driscoll, I. (2017). Cognitive correlates of spatial navigation: associations between executive functioning and the virtual Morris Water Task. Behavioural Brain Research, 317, 470–478.
*Kozlowski, L. T., & Bryant, K. J. (1977). Sense of direction, spatial orientation, and cognitive maps. Journal of Experimental Psychology: Human Perception and Performance, 3, 590–598. https://doi.org/10.1037/0096-1523.3.4.590
Google Scholar
*Kushigian, R. H. (1998, March). Training for indoor wayfinding: The comparative effects of landmark, route, and configuration instruction. Dissertation Abstracts International Section A: Humanities and Social Sciences, 59(9–A), 3319
Lauer, J. E., Yhang, E., & Lourenco, S. F. (2019). The development of gender differences in spatial reasoning: A meta-analytic review. Psychological Bulletin, 45(6), 537–565. https://doi.org/10.1037/bul000019
Laurance, H. E., Learmonth, A. E., Nadel, L., & Jacobs, W. J. (2003). Maturation of spatial navigation strategies: Convergent findings from computerized spatial environments and self-report. Journal of Cognition and Development, 4, 211-238. https://doi.org/10.1207/S15327647JCD0402-04
Article
Google Scholar
Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30, 765–779. https://doi.org/10.1007/BF015442
Article
Google Scholar
*Lawton, C. A. (1996). Strategies for indoor wayfinding: The role of orientation. Journal of Environmental Psychology, 16, 137–145. https://doi.org/10.1006/jevp.1996.0011
Google Scholar
*Lawton, C. A., Charleston, S. I., & Zieles, A. S. (1996). Individual-and gender-related differences in indoor wayfinding. Environment and Behavior, 28, 204-219. https://doi.org/10.1177/0013916596282003
Google Scholar
Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex Roles, 47, 389-401. https://doi.org/10.1023/A:1021668
Article
Google Scholar
Learmonth, A. E., Newcombe, N. S., Sheridan, N., & Jones, M. (2003). Why size counts: Children’s spatial reorientation in large and small enclosures. Developmental Science, 11, 414–426. https://doi.org/10.1111/j.1467-7687.2008.00686.x
Article
Google Scholar
*Lehnung, M., Haaland, V. Ø., Pohl, J., & Leplow, B. (2001). Compass-versus finger-pointing tasks: The influence of different methods of assessment on age-related orientation performance in children. Journal of Environmental Psychology, 21, 283–289. https://doi.org/10.1006/jevp.2001.0208
Google Scholar
Lenney, E. (1977). Women’s self-confidence in achievement settings. Psychological Bulletin, 84, 1–13. https://doi.org/10.1037/0033-2909.84.1.1
Article
Google Scholar
*Liben, L. S., Myers, L. J., Christensen, A. E., & Bower, C. A. (2013). Environmental-scale map use in middle childhood: Links to spatial skills, strategies, and gender. Child Development, 84, 2047–2063. https://doi.org/10.1111/cdev.12090
PubMed
Google Scholar
*Lingwood, J., Blades, M., Farran, E. K., Courbois, Y., & Matthews, D. (2015). The development of wayfinding abilities in children: Learning routes with and without landmarks. Journal of Environmental Psychology, 41, 74–80. https://doi.org/10.1016/j.jenvp.2014.11.008
Google Scholar
Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks: SAGE.
Google Scholar
Lisofsky, N., Riediger, M., Gallinat, J., Lindenberger, U., & Kühn, S. (2016). Hormonal contraceptive use is associated with neural and affective changes in healthy young women. NeuroImage, 134, 597–606. https://doi.org/10.1016/j.neuroimage.2016.04.042
Article
PubMed
Google Scholar
*Liu, I., Levy, R. M., Barton, J. J., & Iaria, G. (2011). Age and gender differences in various topographical orientation strategies. Brain Research, 1410, 112–119. https://doi.org/10.1016/j.brainres.2011.07.005
PubMed
Google Scholar
*Livingstone-Lee, S. A., Zeman, P. M., Gillingham, S. T., & Skelton, R. W. (2014). Navigational strategy may be more a matter of environment and experience than gender. Learning and Motivation, 45, 30–43. https://doi.org/10.1016/j.lmot.2013.09.003
Google Scholar
Lohman, D. F. (1986). The effect of speed-accuracy tradeoff on sex differences in mental rotation. Perception and Psychophysics, 39, 427-436. https://doi.org/10.3758/BF03207071
Article
PubMed
Google Scholar
*Lövdén, M., Herlitz, A., Schellenbach, M., Grossman-Hutter, B., Krüger, A., & Lindenberger, U. (2007). Quantitative and qualitative sex differences in spatial navigation. Scandinavian Journal of Psychology, 48, 353–358. https://doi.org/10.1111/j.1467-9450.2007.00582.x
PubMed
Google Scholar
*Malinowski, J. C., & Gillespie, W. T. (2001). Individual differences in performance on a large-scale, real-world wayfinding task. Journal of Environmental Psychology, 21, 73–82. https://doi.org/10.1006/jevp.2000.0183
Google Scholar
*Marchette, S. A., Yerramsetti, A., Burns, T. J., & Shelton, A. L. (2011). Spatial memory in the real world: Long-term representations of everyday environments. Memory & Cognition, 39, 1401–1408. https://doi.org/10.3758/s13421-011-0108-x
Google Scholar
*McGuiness, D., & Sparks, J. (1983). Cognitive style and cognitive maps: Sex differences in representations of a familiar terrain. Journal of Mental Imagery, 7, 91–100.
*Meilinger, T., Frankenstein, J., & Bülthoff, H. H. (2013). Learning to navigate: Experience versus maps. Cognition, 129, 24–30. https://doi.org/10.1016/j.cognition.2013.05.013
PubMed
Google Scholar
*Meilinger, T., Frankenstein, J., Simon, N., Bülthoff, H. H., & Bresciani, J. P. (2016). Not all memories are the same: Situational context influences spatial recall within one’s city of residency. Psychonomic Bulletin & Review, 23, 246–252. https://doi.org/10.3758/s13423-015-0883-7
Google Scholar
Meilinger, T., Frankenstein, J., Watanabe, K., Bülthoff, H. H., & Hölscher, C. (2015). Reference frames in learning from maps and navigation. Psychological Research, 79, 1000–1008. https://doi.org/10.1007/s00426-014-0629-6
PubMed
Google Scholar
Meilinger, T., Hölscher, C., Büchner, S. J., & Brösamle, M. (2006). How much information do you need? Schematic maps in wayfinding and self localisation. In International Conference on Spatial Cognition (pp. 381–400). Berlin, Germany: Springer.
*Meilinger, T., Knauff, M., & Bülthoff, H. H. (2008). Working memory in wayfinding—A dual task experiment in a virtual city. Cognitive Science, 32, 755–770. https://doi.org/10.1080/03640210802067004
Google Scholar
*Meilinger, T., Riecke, B. E., & Bülthoff, H. H. (2014). Local and global reference frames for environmental spaces. The Quarterly Journal of Experimental Psychology, 67, 542–569. https://doi.org/10.1080/17470218.2013.821145
Google Scholar
*Meneghetti, C., Borella, E., Gyselinck, V., & De Beni, R. (2012). Age-differences in environment route learning: The role of input and recall-test modalities in young and older adults. Learning and Individual Differences, 22, 884–890. https://doi.org/10.1016/j.lindif.2012.04.006
Google Scholar
*Merrill, E. C., Yang, Y., Roskos, B., & Steele, S. (2016). Sex differences in using spatial and verbal abilities influence route learning performance in a virtual environment: A comparison of 6- to 12-year old boys and girls. Frontiers in Psychology, 7, 258. https://doi.org/10.3389/fpsyg.2016.00258
*Moffat, S. D., Hampson, E., & Hatzipantelis, M. (1998). Navigation in a “virtual” maze: Sex differences and correlation with psychometric measures of spatial ability in humans. Evolution and Human Behavior, 19, 73–87. https://doi.org/10.1016/S1090-5138(97)00104-9
Google Scholar
*Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17, 1274–1282. https://doi.org/10.1093/cercor/bhl036
PubMed
Google Scholar
*Montello, D. R. (1991). Spatial orientation and the angularity of urban routes: A field study. Environment and Behavior, 23, 47–69. https://doi.org/10.1177/0013916591231003
Google Scholar
Montello, D. R. (1993). Scale and multiple psychologies of space. In European conference on spatial information theory (pp. 312-321). Springer, Berlin, Heidelberg.
Google Scholar
Montello, D. R. (2010). You are where? The function and frustration of you-are-here (YAH) maps. Spatial Cognition & Computation, 10, 94–104. https://doi.org/10.1080/13875860903585323
Article
Google Scholar
*Montello, D. R., Hölscher, C., Büchner, S. J., & Mavridou, M. (2016). The role of prägnanz in apprehending architectural layouts: Coordinating egocentric and allocentric spatial knowledge. Unpublished raw data.
*Montello, D. R., Lovelace, K. L., Golledge, R. G., & Self, C. M. (1999). Sex-related differences and similarities in geographic and environmental spatial abilities. Annals of the Association of American Geographers, 89, 515–534. https://doi.org/10.1111/0004-5608.00160
Google Scholar
*Montello, D. R., & Pick, H. L., Jr. (1993). Integrating knowledge of vertically aligned large-scale spaces. Environment and Behavior, 25, 457–484. https://doi.org/10.1177/0013916593253002
Google Scholar
Morris, R. G. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239–260. https://doi.org/10.1016/0023-9690(81)90020-5
Article
Google Scholar
Nazareth, A., Newcombe, N. S., Shipley, T. F., Velazquez, M., & Weisberg, S. M. (in press). Beyond small-scale spatial skills: Navigation skills and geoscience education. Cognitive Research: Principles and Implications.
*Nazareth, A., Weisberg, S. M., Margulis, K., & Newcombe, N. S. (2018). Charting the development of cognitive mapping. Journal of Experimental Child Psychology, 170, 86–106. https://doi.org/10.1016/j.jecp.2018.01.009
PubMed
Google Scholar
*Neidhardt, E., & Popp, M. (2010). Spatial tests, familiarity with the surroundings, and spatial activity experience: How do they contribute to children’s spatial orientation in macro environments? Journal of Individual Differences, 31, 59–63. https://doi.org/10.1027/1614-0001/a000010
Google Scholar
*Nelligan, B. D. (2016). Understanding navigational success in humans (Doctoral dissertation, Johns Hopkins University). Retrieved from http://jhir.library.jhu.edu/handle/1774.2/40817
*New, J., Krasnow, M. M., Truxaw, D., & Gaulin, S. J. (2007). Spatial adaptations for plant foraging: Women excel and calories count. Proceedings of the Royal Society of London B: Biological Sciences, 274(1626), 2679–2684. Retrieved from http://www.jstor.org/stable/25249384
Newcombe, N. (1985). Methods for the study of spatial representation. In R. Cohen (Ed.), The development of spatial cognition (pp. 277–300). Hillsdale: Erlbaum.
Google Scholar
Newcombe, N. S. (2018). Individual variation in human navigation. Current Biology, 28, R1004–R1008. https://doi.org/10.1016/j.cub.2018.04.053
Article
PubMed
Google Scholar
*Ngo, C. T., Weisberg, S. M., Newcombe, N. S., & Olson, I. R. (2016). The relation between navigation strategy and associative memory: An individual differences approach. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42, 663. https://doi.org/10.1037/xlm0000193
PubMed
Google Scholar
*Nori, R., Grandicelli, S., & Giusberti, F. (2009). Individual differences in visuo-spatial working memory and real-world wayfinding. Swiss Journal of Psychology / Schweizerische Zeitschrift Für Psychologie / Revue Suisse De Psychologie, 68, 7–16. https://doi.org/10.1024/1421-0185.68.1.7
Google Scholar
*Nowak, N. T., Diamond, M. P., Land, S. J., & Moffat, S. D. (2014). Contributions of sex, testosterone, and androgen receptor CAG repeat number to virtual Morris water maze performance. Psychoneuroendocrinology, 41, 13–22. https://doi.org/10.1016/j.psyneuen.2013.12.003
PubMed
Google Scholar
*Nowak, N. T., & Moffat, S. D. (2011). The relationship between second to fourth digit ratio, spatial cognition, and virtual navigation. Archives of Sexual Behavior, 40, 575–585. https://doi.org/10.1007/s10508-010-9668-2
PubMed
Google Scholar
*Oberholzer, Y. (2017.). Does GPS rot your brain?: An investigation of spatial knowledge acquisition during GPS guided navigation (Unpublished doctoral dissertation). Universität Zürich, Switzerland.
*Ohnishi, T., Matsuda, H., Hirakata, M., & Ugawa, Y. (2006). Navigation ability dependent neural activation in the human brain: An fMRI study. Neuroscience Research, 55, 361–369. https://doi.org/10.1016/j.neures.2006.04.009
PubMed
Google Scholar
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.
Google Scholar
O’Laughlin, E. M., & Brubaker, B. S. (1998). Use of landmarks in cognitive mapping: Gender differences in self report versus performance. Personality and Individual Differences, 24, 595–601. https://doi.org/10.1016/S0191-8869(97)00237-7
Article
Google Scholar
Overman, W. H., Pate, B. J., Moore, K., & Peuster, A. (1996). Ontogeny of place learning in children as measured in the radial arm maze, Morris search task, and open field task. Behavioral Neuroscience, 110, 1205–1228. https://doi.org/10.1037/0735-7044.110.6.1206
Article
PubMed
Google Scholar
Packard, M. G., & McGaugh, J. L. (1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65, 65–72. https://doi.org/10.1006/nlme.1996.0007
Article
PubMed
Google Scholar
*Padgitt, A. J., & Hund, A. M. (2012). How good are these directions? Determining direction quality and wayfinding efficiency. Journal of Environmental Psychology, 32, 164–172. https://doi.org/10.1016/j.jenvp.2012.01.007
Google Scholar
*Padilla, L. M., Creem-Regehr, S. H., Stefanucci, J. K., & Cashdan, E. A. (2017). Sex differences in virtual navigation influenced by scale and navigation experience. Psychonomic Bulletin & Review, 24, 582-590. https://doi.org/10.3758/s134
*Pazzaglia, F., & Taylor, H. A. (2007). Perspective, instruction, and cognitive style in spatial representation of a virtual environment. Spatial Cognition and Computation, 7, 349–364. https://doi.org/10.1080/13875860701663223
Google Scholar
*Pingel, T. J. (2010). Strategic elements of route choice (Order No. 3398843). Available from ProQuest Dissertations & Theses Global. (276104070)
*Piper, B. J., Acevedo, S. F., Edwards, K. R., Curtiss, A. B., McGinnis, G. J., & Raber, J. (2011). Age, sex, and handedness differentially contribute to neurospatial function on the Memory Island and Novel-Image Novel-Location tests. Physiology & Behavior, 103, 513–522. https://doi.org/10.1016/j.physbeh.2011.03.024
Google Scholar
*Postma, A., Van Oers, M., Back, F., & Plukaard, S. (2012). Losing your car in the parking lot: Spatial memory in the real world. Applied Cognitive Psychology, 26, 680–686. https://doi.org/10.1002/acp.2844
Google Scholar
Poulter, S., Hartley, T., & Lever, C. (2018). The Neurobiology of mammalian navigation. Current Biology, 28, R1023–R1042. https://doi.org/10.1016/j.cub.2018.05.050
Article
PubMed
Google Scholar
*Purser, H. R., Farran, E. K., Courbois, Y., Lemahieu, A., Mellier, D., Sockeel, P., & Blades, M. (2012). Short-term memory, executive control, and children’s route learning. Journal of Experimental Child Psychology, 113, 273–285. https://doi.org/10.1016/j.jecp.2012.06.005
PubMed
Google Scholar
*Purser, H. R., Farran, E. K., Courbois, Y., Lemahieu, A., Sockeel, P., Mellier, D., & Blades, M. (2015). The development of route learning in Down syndrome, Williams syndrome and typical development: investigations with virtual environments. Developmental Science, 18, 599-613. https://doi.org/10.1111/desc.12236
PubMed
Google Scholar
Puts, D. A., McDaniel, M. A., Jordan, C. L., & Breedlove, S. M. (2008). Spatial ability and prenatal androgens: Meta-analyses of congenital adrenal hyperplasia and digit ratio (2D: 4D) studies. Archives of Sexual Behavior, 37, 100–111. https://doi.org/10.1007/s10508-007-9271-3
Article
PubMed
PubMed Central
Google Scholar
*Rahman, Q., Sharp, J., McVeigh, M., & Ho, M. L. (2017). Sexual orientation-related differences in virtual spatial navigation and spatial search strategies. Archives of Sexual Behavior, 46, 1279–1294. https://doi.org/10.1007/S10508-017-0986-5
PubMed
PubMed Central
Google Scholar
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd). Newbury Park: SAGE.
Google Scholar
*Richardson, A. E., Powers, M. E., & Bousquet, L. G. (2011). Video game experience predicts virtual, but not real navigation performance. Computers in Human Behavior, 27, 552–560. https://doi.org/10.1016/j.chb.2010.10.003
Google Scholar
*Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27, 741–750. https://doi.org/10.3758/BF03211566
Google Scholar
*Rizk-Jackson, A., Acevedo, S. F., Inman, D., Howieson, D., Benice, T. S., & Raber, J. (2006). Effects of sex on object recognition and spatial navigation in humans. Behavioural Brain Research, 173, 181–190. https://doi.org/10.1016/j.bbr.2006.06.029
Google Scholar
*Rodgers, M. K., Sindone, J. A., III, & Moffat, S. D. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33, 202–e15. https://doi.org/10.1016/j.neurobiolaging.2010.07.021
Google Scholar
Rosenthal, R. (1991). Meta-analytic procedures for social research (Rev.). Beverly Hills: SAGE.
Google Scholar
Rosenthal, R. (1979). The “file drawer problem” and the tolerance for null results. Psychological Bulletin, 86, 638–641. https://doi.org/10.1037/0033-2909.86.3.638
Article
Google Scholar
*Ruddle, R. A., Volkova, E., Mohler, B., & Bülthoff, H. H. (2011). The effect of landmark and body-based sensory information on route knowledge. Memory & Cognition, 39, 686–699. https://doi.org/10.3758/s13421-010-0054-z
Google Scholar
*Sadalla, E. K., & Montello, D. R. (1989). Remembering changes in direction. Environment and Behavior, 21, 346–363. https://doi.org/10.1177/0013916589213006
Google Scholar
*Sandberg, E. H., & Huttenlocher, J. (2001). Advanced spatial skills and advance planning: Components of 6-year-olds’ navigational map use. Journal of Cognition and Development, 2, 51–70. https://doi.org/10.1207/S15327647JCD0201_3
Google Scholar
*Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6, 351–360. https://doi.org/10.1016/S0926-6410(98)00002-0
PubMed
Google Scholar
*Sargent, J. Q., Zacks, J. M., Hambrick, D. Z., & Lin, N. (2019). Event memory uniquely predicts memory for large-scale space. Memory & Cognition, 1–17. https://doi.org/10.3758/s13421-018-0860-2
Google Scholar
*Saucier, D. M., Green, S. M., Leason, J., MacFadden, A., Bell, S., & Elias, L. J. (2002). Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies?. Behavioral Neuroscience, 116, 403–410. https://doi.org/10.1037/0735-7044.116.3.403
PubMed
Google Scholar
*Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23, 515–528. https://doi.org/10.1002/hipo.22111
PubMed
PubMed Central
Google Scholar
*Schmitz, S. (1997). Gender-related strategies in environmental development: Effects of anxiety on wayfinding in and representation of a three-dimensional maze. Journal of Environmental Psychology, 17, 215–228. https://doi.org/10.1006/jevp.1997.0056
Google Scholar
*Schmitz, S. (1999). Gender differences in acquisition of environmental knowledge related to wayfinding behavior, spatial anxiety and self-estimated environmental competencies. Sex Roles, 41, 71–93. https://doi.org/10.1023/A:1018837808724
Google Scholar
*Schmitzer-Torbert, N. (2007). Place and response learning in human virtual navigation: Behavioral measures and gender differences. Behavioral Neuroscience, 121, 277–290. https://doi.org/10.1037/0735-7044.121.2.277
PubMed
Google Scholar
*Schoenfeld, R., Lehmann, W., & Leplow, B. (2010). Effects of age and sex in mental rotation and spatial learning from virtual environments. Journal of Individual Differences, 31, 78-82. https://doi.org/10.1027/1614-0001/a000014
Google Scholar
*Sensibaug, T. K. (2017). BIS and BAS sensitivity and spatial navigation ability (Unpublished master’s thesis). University of Wyoming, Laramie, WY.
*Shore, D. I., Stanford, L., MacInnes, W. J., Brown, R. E., & Klein, R. M. (2001). Of mice and men: Virtual Hebb—Williams mazes permit comparison of spatial learning across species. Cognitive, Affective, & Behavioral Neuroscience, 1, 83-89. https://doi.org/10.3758/CABN.1.1.83
Google Scholar
*Silverman, I., Choi, J., Mackewn, A., Fisher, M., Moro, J., & Olshansky, E. (2000). Evolved mechanisms underlying wayfinding: Further studies on the hunter-gatherer theory of spatial sex differences. Evolution and Human Behavior, 21, 201–213. https://doi.org/10.1016/S1090-5138(00)00036-2
PubMed
Google Scholar
*Sjölinder, M., Höök, K., Nilsson, L., & Andersson, G. (2005). Age differences and the acquisition of spatial knowledge in a three-dimensional environment: Evaluating the use of an overview map as a navigation aid. International Journal of Human-Computer Studies, 63, 537–564. https://doi.org/10.1016/j.ijhcs.2005.04.024
Google Scholar
Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271, 1870–1873. https://doi.org/10.1126/science.271.5257.1870
Article
PubMed
Google Scholar
Sterling, T. D. (1959). Publication decisions and their possible effects on inferences drawn from tests of significance—Or vice versa. Journal of the American Statistical Association, 54, 30–34. https://doi.org/10.2307/2282137
Article
Google Scholar
*Sugimoto, M., & Kusumi, T. (2014). The effect of text continuity on spatial representation: Route versus survey perspective. Cognitive Processing, 15, 65–75. https://doi.org/10.1007/s10339-013-0582-0
Google Scholar
Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th). Boston: Allyn & Bacon.
Google Scholar
*Tan, D. S., Czerwinsk, M. P., & Robertson, G. G. (2006). Large displays enhance optical flow cues and narrow the gender gap in 3-D virtual navigation. Human Factors, 48, 318–333. https://doi.org/10.1518/001872006777724381
Google Scholar
*Tang, C., Wu, W., & Lin, C. (2009). Using virtual reality to determine how emergency signs facilitate way-finding. Applied Ergonomics, 40, 722–730. https://doi.org/10.1016/j.apergo.2008.06.009
PubMed
Google Scholar
*Tippett, W. J., Lee, J., Mraz, R., Zakzanis, K. K., Snyder, P. J., Black, S. E., & Graham, S. J. (2009). Convergent validity and sex differences in healthy elderly adults for performance on 3D virtual reality navigation learning and 2D hidden maze tasks. CyberPsychology & Behavior, 12, 169–174. https://doi.org/10.1089/cpb.2008.0218
Google Scholar
*Tlauka, M., Brolese, A., Pomeroy, D., & Hobbs, W. (2005). Gender differences in spatial knowledge acquired through simulated exploration of a virtual shopping centre. Journal of Environmental Psychology, 25, 111–118. https://doi.org/10.1016/j.jenvp.2004.12.002
Google Scholar
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A., Warren, C., & Newcombe, N. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352–402. https://doi.org/10.1037/a0028446
Article
PubMed
Google Scholar
*van Gerven, Dustin J. H., Schneider, A. N., Wuitchik, D. M., & Skelton, R. W. (2012). Direct measurement of spontaneous strategy selection in a virtual Morris water maze shows females choose an allocentric strategy at least as often as males do. Behavioral Neuroscience, 126, 465–478. https://doi.org/10.1037/a0027992
PubMed
Google Scholar
*Vashro, L., & Cashdan, E. (2015). Spatial cognition, mobility, and reproductive success in northwestern Namibia. Evolution and Human Behavior, 36, 123–129. https://doi.org/10.1016/j.evolhumbehav.2014.09.009
Google Scholar
*Vashro, L., Padilla, L., & Cashdan, E. (2016). Sex differences in mobility and spatial cognition. Human Nature, 27, 16–34. https://doi.org/10.1007/s12110-015-9247-2
Google Scholar
*Ventura, M., Shute, V., Wright, T., & Zhao, W. (2013). An investigation of the validity of the virtual spatial navigation assessment. Frontiers in Psychology, 4.
https://doi.org/10.3389/fpsyg.2013.00852
*Verdine, B. N. (2011). Navigation experience in video game environments: Effects on spatial ability and map use skills (Order No. 3479852). Available from ProQuest Dissertations & Theses Global. (898587381)
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36, 1–48. Retrieved from http://www.jstatsoft.org/v36/i03/
Google Scholar
*von Stülpnagel, R., & Steffens, M. C. (2013). Active route learning in virtual environments: Disentangling movement control from intention, instruction specificity, and navigation control. Psychological Research, 77, 555–574. https://doi.org/10.1007/s00426-012-0451-y
PubMed
Google Scholar
Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1, 848–858. https://doi.org/10.1038/nprot.2006.116
Article
PubMed
PubMed Central
Google Scholar
Voyer, D. (2011). Time limits and gender differences on paper-and-pencil tests of mental rotation: A meta-analysis. Psychonomic Bulletin and Review, 18, 267–277.
https://doi.org/10.3758/s13423-010-0042-0
Article
PubMed
Google Scholar
Voyer, D., & Voyer, S. D. (2014). Gender differences in scholastic achievement: A meta-analysis. Psychological Bulletin, 140, 1174–1204. https://doi.org/10.1037/a0036620
Article
PubMed
Google Scholar
Voyer, D., Voyer, S. D. & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychological bulletin, 117(2), 250.
PubMed
Google Scholar
Voyer, D., Voyer, S. D., & Saint-Aubin, J. (2017). Sex differences in spatial working memory: A meta-analysis. Psychonomic Bulletin and Review, 24, 307–334.
https://doi.org/10.3758/s13423-016-1085-7
Article
PubMed
Google Scholar
*Waller, D., & Greenauer, N. (2007). The role of body-based sensory information in the acquisition of enduring spatial representations. Psychological Research, 71, 322–332. https://doi.org/10.1007/s00426-006-0087-x
PubMed
Google Scholar
*Waller, D., Knapp, D., & Hunt, E. (2001). Spatial representations of virtual mazes: The role of visual fidelity and individual differences. Human Factors, 43, 147–158. https://doi.org/10.1518/001872001775992561
Google Scholar
Wang, L., & Carr, M. (2014). Working memory and strategy use contribute to gender differences in spatial ability. Educational Psychologist, 49, 261–282. https://doi.org/10.1080/00461520.2014.960568
Article
Google Scholar
*Wang, L., Mou, W., & Sun, X. (2014). Development of landmark knowledge at decision points. Spatial Cognition & Computation, 14, 1–17. https://doi.org/10.1080/13875868.2013.784768
Google Scholar
*Ward, S. L., Newcombe, N., & Overton, W. F. (1986). Turn left at the church, or three miles north: A study of direction giving and sex differences. Environment and Behavior, 18, 192–213. https://doi.org/10.1177/0013916586182003
Google Scholar
*Watson, T. L. (1999). Can I get there from here (and can I get back)? A study of abilities and wayfinding performance (aging, gender differences, spatial cognition, older adults). Dissertation Abstracts International: Section B: The Sciences and Engineering, 60(5–B), 2395.
*Weisberg, S. M., & Newcombe, N. S. (2014). A slippery directional slope: Individual differences in using slope as a directional cue. Memory & Cognition, 42, 648–661. https://doi.org/10.3758/s13421-013-0387-5
Google Scholar
*Weisberg, S. M., Badgio, D., & Chatterjee, A. (2018). Feel the way with a vibrotactile compass: Does a navigational aid navigation? Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 667–679. https://doi.org/10.1037/xlm0000472
PubMed
Google Scholar
*Weisberg, S. M., & Newcombe, N.S. (2016) How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 768–785. https://doi.org/10.1037/xlm0000200
PubMed
Google Scholar
*Wenczel, F., Hepperle, L., & von Stülpnagel, R. (2017). Gaze behavior during incidental and intentional navigation in an outdoor environment. Spatial Cognition & Computation, 17, 121–142. https://doi.org/10.1080/13875868.2016.1226838
Google Scholar
Wiener, J. M., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: A knowledge-based approach. Spatial Cognition & Computation, 9, 152–165. https://doi.org/10.1080/13875860902906496
Article
Google Scholar
*Wiener, J. M., de Condappa, O., Harris, M. A., & Wolbers, T. (2013). Maladaptive bias for extrahippocampal navigation strategies in aging humans. Journal of Neuroscience, 33, 6012–6017. https://doi.org/10.1523/JNEUROSCI.0717-12.2013
PubMed
Google Scholar
*Wiener, J. M., Kmecova, H., & de Condappa, O. (2012). Route repetition and route retracing: Effects of cognitive aging. Frontiers in Aging Neuroscience, 4, 7. https://doi.org/10.3389/fnagi.2012.00007
*Wiener, J. M., & Mallot, H. A. (2003). ‘Fine-to-coarse’ route planning and navigation in regionalized environments. Spatial Cognition and Computation, 3, 331–358. https://doi.org/10.1207/s15427633scc0304_5
Google Scholar
*Wiener, J. M., Schnee, A., & Mallot, H. A. (2004). Use and interaction of navigation strategies in regionalized environments. Journal of Environmental Psychology, 24, 475–493. https://doi.org/10.1016/j.jenvp.2004.09.006
Google Scholar
Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14, 138–146. https://doi.org/10.1016/j.tics.2010.01.001
Article
PubMed
Google Scholar
Wood, B. M., Harris, J. A., Vashro, L., Sayre, K. M., Raichlen, D. A., Pontzer, H., … Cashdan, E. (2019). Hadza hunter-gatherers exhibit gender differences in space use and spatial cognition consistent with the ecology of male and female targeted foods. American Journal of Physical Anthropology, 168(S68), 273–274.
Google Scholar
*Yasen, A. L., Raber, J., Miller, J. K., & Piper, B. J. (2015). Sex, but not apolipoprotein E polymorphism, differences in spatial performance in young adults. Archives of Sexual Behavior, 44, 2219-2226. https://doi.org/10.1007/s10508-015-0497-1
PubMed
PubMed Central
Google Scholar
*Yuan, P., Daugherty, A. M., & Raz, N. (2014). Turning bias in virtual spatial navigation: Age-related differences and neuroanatomical correlates. Biological Psychology, 96, 8-19. https://doi.org/10.1016/j.biopsycho.2013.10.009
PubMed
Google Scholar
*Zancada-Menendez, C., Sampedro-Piquero, P., Meneghetti, C., Labate, E., Begega, A., & Lopez, L. (2015). Age differences in path learning: The role of interference in updating spatial information. Learning and Individual Differences, 38, 83–89. https://doi.org/10.1016/j.lindif.2015.01.015
Google Scholar
*Zhong, J. Y. (2011). Individual differences in navigational strategies and mental representations of large-scale environments. Honors Thesis archived in the Central Library of the National University of Singapore, Singapore (Call no.: BF21-2011-49).
*Zwergal, A., Schöberl, F., Xiong, G., Pradhan, C., Covic, A., Werner, P., … Dieterich, M. (2016). Anisotropy of human horizontal and vertical navigation in real space: Behavioral and PET correlates. Cerebral Cortex, 26, 4392–4404. https://doi.org/10.1093/cercor/bhv213
Google Scholar