Prior experience informs ensemble encoding

  • L. Elizabeth CrawfordEmail author
  • Jonathan C. Corbin
  • David Landy
Brief Report


People quickly form summary representations that capture the statistical structure in a set of simultaneously-presented objects. We present evidence that such ensemble encoding is informed not only by the presented set of objects, but also by a meta-ensemble, or prototype, that captures the structure of previously viewed stimuli. Participants viewed four objects (shaded squares in Experiment 1; emotional expressions in Experiment 2) and estimated their average by adjusting a response object. Estimates were biased toward the central value of previous stimuli, consistent with Bayesian models of how people combine hierarchical sources of information. The results suggest that an inductively learned prototype may serve as a source of prior information to adjust ensemble estimates. To the extent that real environments present statistical structure in a given moment as well as consistently over time, ensemble encoding in real-world situations ought to take advantage of both kinds of regularity.


Ensemble encoding Category learning Statistical learning 



  1. Abrosoft. (2002). FantaMorph SE (Version 5.4.6) [Software]. Available from
  2. Allred, S.R., Crawford, L.E., Duffy, S., & Smith, J.B. (2016). Working memory and spatial judgments: Cognitive load increases the central tendency bias. Psychonomic Bulletin & Review, 23(6), 1825-1831.CrossRefGoogle Scholar
  3. Alvarez, G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 15(3), 122-131. CrossRefPubMedGoogle Scholar
  4. Alvarez, G. A., & Oliva, A. (2009). Spatial ensemble statistics are efficient codes that can be represented with reduced attention. Proceedings of the National Academy of Sciences, 106(18), 7345-7350. CrossRefGoogle Scholar
  5. Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12, 157–162. CrossRefPubMedGoogle Scholar
  6. Brady, T. F., &Alvarez, G.A. (2011). Hierarchical encoding in visual working memory: Ensemble statistics bias memory for individual items. Psychological Science, 22(3), 384-392. CrossRefPubMedGoogle Scholar
  7. Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4), 487-502. CrossRefGoogle Scholar
  8. Chetverikov, A., Campana, G., & Kristjánsson, Á. (2016). Building ensemble representations: How the shape of preceding distractor distributions affects visual search. Cognition, 153, 196-210. CrossRefPubMedGoogle Scholar
  9. Chong, S. C. & Treisman, A. (2003). Representation of statistical properties. Vision Research, 43, 393-404. CrossRefPubMedGoogle Scholar
  10. Corbett, J. E., & Melcher, D. (2014). Stable statistical representations facilitate visual search. Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1915-1925.PubMedGoogle Scholar
  11. Corbett, J. E., & Oriet, C. (2011). The whole is indeed more than the sum of its parts: Perceptual averaging in the absence of individual item representation. Acta psychologica, 138(2), 289-301. CrossRefPubMedGoogle Scholar
  12. Corbin, J. C., Crawford, L. E., & Vavra, D. T. (2017). Misremembering emotion: Inductive category effects for complex emotional stimuli. Memory & Cognition, 45(5), 691-698. CrossRefGoogle Scholar
  13. Crawford, L. E., Huttenlocher, J., & Engebretson, P. H. (2000). Category effects on estimates of stimuli: Perception or reconstruction? Psychological Science, 11, 280-284. CrossRefPubMedGoogle Scholar
  14. Crawford, L.E., Huttenlocher, J. & Hedges, L.V. (2006). Within-category feature correlations and Bayesian adjustment strategies. Psychonomic Bulletin & Review, 13, 245-250. CrossRefGoogle Scholar
  15. de Fockert, J. W., & Marchant, A. P. (2008). Attention modulates set representation by statistical properties. Perception & Psychophysics, 70, 789–794. Scholar
  16. Duffy, S., & Crawford, L. E. (2008). Primacy or recency effects in the formation of inductive categories. Memory & Cognition, 36, 567-577. CrossRefGoogle Scholar
  17. Duffy, S., Huttenlocher, J., Hedges, L. V., & Crawford, L. E. (2010). Category effects on stimulus estimation: Shifting and skewed frequency distributions. Psychonomic Bulletin & Review, 17, 224-230. CrossRefGoogle Scholar
  18. Duffy, S., & Smith, J. (2017). Category effects on stimulus estimation: Shifting and skewed frequency distributions – A reexamination. Psychonomic Bulletin & Review. CrossRefGoogle Scholar
  19. Feldman, N. H., Griffiths, T. L., & Morgan, J. L. (2009). The influence of categories on perception: Explaining the perceptual magnet effect as optimal statistical inference. Psychological Review, 116(4), 752-782. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Haberman, J., Brady, T. F., & Alvarez, G. A. (2015). Individual differences in ensemble perception reveal multiple, independent levels of ensemble representation. Journal of Experimental Psychology: General, 144(2), 432-446. CrossRefGoogle Scholar
  21. Haberman, J., & Whitney, D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception and Performance, 35, 718-734. CrossRefPubMedGoogle Scholar
  22. Hemmer, P., & Steyvers, M. (2009). Integrating episodic memories and prior knowledge at multiple levels of abstraction. Psychonomic Bulletin & Review, 16, 80-87.CrossRefGoogle Scholar
  23. Huttenlocher, J., Hedges, L. V., & Vevea, J. L. (2000). Why do categories affect stimulus judgment? Journal of Experimental Psychology: General, 129, 220-241. CrossRefGoogle Scholar
  24. Maurer D., Le Grand, R., Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6, 255-260. CrossRefPubMedGoogle Scholar
  25. Muczek, K., & Simons, D. J. (2008). Better than average: Alternatives to statistical summary representations for rapid judgments of average size. Perception & Psychophysics, 70, 772–788. Scholar
  26. Olkkonen, M., & Allred, S. R. (2014). Short-term memory affects color perception in context. PloS One, 9, e86488. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Oriet, C., & Hozempa, K. (2016). Incidental statistical summary representation over time. Journal of Vision, 16(3), 1-14. CrossRefGoogle Scholar
  28. Persaud, K., & Hemmer, P. (2016). The Dynamics of Fidelity over the Time Course of Long-Term Memory. Cognitive Psychology, 88, 1–21. Scholar
  29. Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. Scholar
  30. Whiting, B. F., & Oriet, C. (2011). Rapid averaging? Not so fast!. Psychonomic Bulletin & Review, 18(3), 484-489. CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • L. Elizabeth Crawford
    • 1
    Email author
  • Jonathan C. Corbin
    • 1
  • David Landy
    • 2
  1. 1.Department of PsychologyUniversity of RichmondRichmondUSA
  2. 2.Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations