Advertisement

Serial dependence in position occurs at the time of perception

  • Mauro Manassi
  • Alina Liberman
  • Anna Kosovicheva
  • Kathy Zhang
  • David Whitney
Brief Report

Abstract

Observers perceive objects in the world as stable over space and time, even though the visual experience of those objects is often discontinuous and distorted due to masking, occlusion, camouflage, or noise. How are we able to easily and quickly achieve stable perception in spite of this constantly changing visual input? It was previously shown that observers experience serial dependence in the perception of features and objects, an effect that extends up to 15 seconds back in time. Here, we asked whether the visual system utilizes an object’s prior physical location to inform future position assignments in order to maximize location stability of an object over time. To test this, we presented subjects with small targets at random angular locations relative to central fixation in the peripheral visual field. Subjects reported the perceived location of the target on each trial by adjusting a cursor’s position to match its location. Subjects made consistent errors when reporting the perceived position of the target on the current trial, mislocalizing it toward the position of the target in the preceding two trials (Experiment 1). This pull in position perception occurred even when a response was not required on the previous trial (Experiment 2). In addition, we show that serial dependence in perceived position occurs immediately after stimulus presentation, and it is a fast stabilization mechanism that does not require a delay (Experiment 3). This indicates that serial dependence occurs for position representations and facilitates the stable perception of objects in space. Taken together with previous work, our results show that serial dependence occurs at many stages of visual processing, from initial position assignment to object categorization.

Keywords

Serial effects Sequential effects Perceptual stability 

Notes

Acknowledgements

This work was supported in part by the Swiss National Science Foundation fellowship P2ELP3_158876 (M.M.) and NSF graduate research fellowships (NSF-GRFP) to A.K. and A.L. This work was originally presented at Vision Science Society Annual Meeting in 2014. We would like to thank Daniel Bliss for useful discussions.

References

  1. Alais, D., Leung, J., & Van der Burg, E. (2017). Linear summation of repulsive and attractive serial dependencies: orientation and motion dependencies sum in motion perception. Journal of Neuroscience, 37(16), 4381–4390.  https://doi.org/10.1523/JNEUROSCI.4601-15.2017 CrossRefPubMedGoogle Scholar
  2. Appelle, S. (1972). Perception and discrimination as a function of stimulus orientation: The “oblique effect” in man and animals. Psychological Bulletin, 78(4), 266.CrossRefPubMedGoogle Scholar
  3. Bliss, D. P., Sun, J. J., & D’Esposito, M. (2017). Serial dependence is absent at the time of perception but increases in visual working memory. Scientific Reports, 7(1), 14739.  https://doi.org/10.1038/s41598-017-15199-7 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433–436.  https://doi.org/10.1163/156856897X00357 CrossRefPubMedGoogle Scholar
  5. Breitmeyer, B. G., Hoar, W. S., Randall, D., & Conte, F. P. (1984). Visual masking: An integrative approach. London, UK: Clarendon Press.Google Scholar
  6. Breitmeyer, B. G., & Ogmen, H. (2000). Recent models and findings in visual backward masking: A comparison, review, and update. Perception & Psychophysics, 62(8), 1572–1595.CrossRefGoogle Scholar
  7. Breitmeyer, B. G., Rudd, M., & Dunn, K. (1981). Metacontrast investigations of sustained–transient channel inhibitory interactions. Journal of Experimental Psychology: Human Perception and Performance, 7(4), 770–779.  https://doi.org/10.1037/0096-1523.7.4.770 PubMedGoogle Scholar
  8. Bressler, D. W., & Whitney, D. (2006). Second-order motion shifts perceived position. Vision Research, 46(6/7), 1120–1128.  https://doi.org/10.1016/j.visres.2005.10.012 CrossRefPubMedGoogle Scholar
  9. Bridgeman, B., Peery, S., & Anand, S. (1997). Interaction of cognitive and sensorimotor maps of visual space. Perception & Psychophysics, 59(3), 456–469.  https://doi.org/10.3758/BF03211912 CrossRefGoogle Scholar
  10. Cai, R. H., Pouget, A., Schlag-Rey, M., & Schlag, J. (1997). Perceived geometrical relationships affected by eye-movement signals. Nature, 386(6625), 601–604.  https://doi.org/10.1038/386601a0 CrossRefPubMedGoogle Scholar
  11. Cicchini, G. M., Anobile, G., & Burr, D. C. (2014). Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform. Proceedings of the National Adacemy of Sciences of the United States of America, 111(21), 7867-7872.  https://doi.org/10.1073/pnas.1402785111 CrossRefGoogle Scholar
  12. Cicchini, G. M., Mikellidou, K., & Burr, D. (2017). Serial dependencies act directly on perception. Journal of Vision, 17(14), 6.  https://doi.org/10.1167/17.14.6
  13. Corbett, J. E., Fischer, J., & Whitney, D. (2011). Facilitating stable representations: Serial dependence in vision. PLOS ONE, 6(1), e16701.  https://doi.org/10.1371/journal.pone.0016701
  14. de Lange, F. P., & Fritsche, M. (2017). Perceptual decision-making: Picking the low-hanging fruit? Trends in Cognitive Sciences, 21(5), 306–307.  https://doi.org/10.1016/j.tics.2017.03.006 CrossRefPubMedGoogle Scholar
  15. De Valois, R. L., & De Valois, K. K. (1991). Vernier acuity with stationary moving Gabors. Vision Research, 31(9), 1619–1626.  https://doi.org/10.1016/0042-6989(91)90138-U CrossRefPubMedGoogle Scholar
  16. Fischer, J., & Whitney, D. (2014). Serial dependence in visual perception. Nature Neuroscience, 17(5), 738–743.  https://doi.org/10.1038/nn.3689 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fritsche, M., Mostert, P., & de Lange, F. P. (2017). Opposite effects of recent history on perception and decision. Current Biology, 27(4), 590–595.  https://doi.org/10.1016/j.cub.2017.01.006 CrossRefPubMedGoogle Scholar
  18. Gepshtein, S., Lesmes, L. A., & Albright, T. D. (2013). Sensory adaptation as optimal resource allocation. Proceedings of the National Adacemy of Sciences of the United States of America, 110(11), 4368–4373.  https://doi.org/10.1073/pnas.1204109110 CrossRefGoogle Scholar
  19. Gibson, J. J., & Radner, M. (1937). Adaptation, after-effect and contrast in the perception of tilted lines: I. Quantitative studies. Journal of Experimental Psychology, 20(5), 453.CrossRefGoogle Scholar
  20. Hess, R. F., Dakin, S. R., & Badcock, D. (1994). Localization of element clusters by the human visual system. Vision Research, 34(18), 2439–2451.  https://doi.org/10.1016/0042-6989(94)90288-7
  21. Keck, M. J., Palella, T. D., & Pantle, A. (1976). Motion aftereffect as a function of the contrast of sinusoidal gratings. Vision Research, 16(2), 187–191.  https://doi.org/10.1016/0042-6989(76)90097-3
  22. Kerzel, D. (2000). Eye movements and visible persistence explain the mislocalization of the final position of a moving target. Vision Research, 40(27), 3703–3715.  https://doi.org/10.1016/S0042-6989(00)00226-1 CrossRefPubMedGoogle Scholar
  23. Kiyonaga, A., Scimeca, J. M., Bliss, D. P., & Whitney, D. (2017). Serial dependence across perception, attention, and memory. Trends in Cognitive Sciences, 21(7), 493–497.  https://doi.org/10.1016/j.tics.2017.04.011 CrossRefPubMedGoogle Scholar
  24. Kolers, P. A. (1962). Intensity and contour effects in visual masking. Vision Research, 2(9/10), 277–274.CrossRefGoogle Scholar
  25. Kondo, A., Takahashi, K., & Watanabe, K. (2012). Sequential effects in face-attractiveness judgment. Perception, 41(1), 43–49.  https://doi.org/10.1068/p7116 CrossRefPubMedGoogle Scholar
  26. Kosovicheva, A., & Whitney, D. (2017). Stable individual signatures in object localization. Current Biology, 27(14), R700–R701.  https://doi.org/10.1016/j.cub.2017.06.001
  27. Liberman, A., Fischer, J., & Whitney, D. (2014). Serial dependence in the perception of faces. Current Biology, 24(21), 2569–2574.  https://doi.org/10.1016/j.cub.2014.09.025
  28. Liberman, A., Zhang, K., & Whitney, D. (2016). Serial dependence promotes object stability during occlusion. Journal of Vision, 16(15), 16.  https://doi.org/10.1167/16.15.16 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Makovski, T., & Jiang, Y. V. (2008). Proactive interference from items previously stored in visual working memory. Memory & Cognition, 36(1), 43–52.  https://doi.org/10.3758/MC.36.1.43 CrossRefGoogle Scholar
  30. Maljkovic, V., & Nakayama, K. (1996). Priming of pop-out: II. The role of position. Perception & Psychophysics, 58(7), 977–991.  https://doi.org/10.3758/BF03206826 CrossRefGoogle Scholar
  31. Manassi, M., Liberman, A., Chaney, W., & Whitney, D. (2017). The perceived stability of scenes: Serial dependence in ensemble representations. Scientific Reports, 7(1), 1971.  https://doi.org/10.1038/s41598-017-02201-5 CrossRefPubMedPubMedCentralGoogle Scholar
  32. McGraw, P. V., Whitaker, D., Skillen, J., & Chung, S. T. (2002). Motion adaptation distorts perceived visual position. Current Biology, 12(23), 2042–2047.CrossRefPubMedGoogle Scholar
  33. Mikellidou, K., Cicchini, G. M., Thompson, P. G., & Burr, D. C. (2015). The oblique effect is both allocentric and egocentric. Journal of Vision, 15(8), 24–24.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nishida, S., & Johnston, A. (1999). Influence of motion signals on the perceived position of spatial pattern. Nature, 397(6720), 610–612.  https://doi.org/10.1038/17600 CrossRefPubMedGoogle Scholar
  35. Papadimitriou, C., Ferdoash, A., & Snyder, L. H. (2015). Ghosts in the machine: Memory interference from the previous trial. Journal of Neurophysiology, 113(2), 567–577.  https://doi.org/10.1152/jn.00402.2014 CrossRefPubMedGoogle Scholar
  36. Raab, D. H. (1963). Backward masking. Psychological Bulletin, 60(2), 118.CrossRefPubMedGoogle Scholar
  37. Rahnev, D., Koizumi, A., McCurdy, L. Y., D’Esposito, M., & Lau, H. (2015). Confidence leak in perceptual decision making. Psychological Science, 26(11), 1664–1680.  https://doi.org/10.1177/0956797615595037 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19(5), 611–616.  https://doi.org/10.1068/p190611 CrossRefPubMedGoogle Scholar
  39. Ross, J., Morrone, M. C., & Burr, D. C. (1997). Compression of visual space before saccades. Nature, 386(6625), 598.Google Scholar
  40. Ross, J., Morrone, M. C., Goldberg, M. E., & Burr, D. C. (2001). Changes in visual perception at the time of saccades. Trends Neurosci, 24(2), 113–121.  https://doi.org/10.1016/S0166-2236(00)01685-4 CrossRefPubMedGoogle Scholar
  41. Shaffer, L. (1978). Timing in the motor programming of typing. The Quarterly Journal of Experimental Psychology, 30(2), 333–345.CrossRefGoogle Scholar
  42. Snowden, R. J. (1998). Shifts in perceived position following adaptation to visual motion. Current Biology, 8(24), 1343–1345.  https://doi.org/10.1016/S0960-9822(07)00567-2 CrossRefPubMedGoogle Scholar
  43. Stecher, S., Sigel, C., & Lange, R. V. (1973). Spatial frequency channels in human vision and the threshold for adaptation. Vision Research, 13(9), 1691–1700.  https://doi.org/10.1016/0042-6989(73)90088-6 CrossRefPubMedGoogle Scholar
  44. Suzuki, S., & Cavanagh, P. (1997). Focused attention distorts visual space: An attentional repulsion effect. Journal of Experimental Psychology: Human Perception and Performance, 23(2), 443–463.  https://doi.org/10.1037/0096-1523.23.2.443 PubMedGoogle Scholar
  45. Tafazoli, S., Di Filippo, A., & Zoccolan, D. (2012). Transformation-tolerant object recognition in rats revealed by visual priming. Journal of Neuroscience, 32(1), 21–34.  https://doi.org/10.1523/JNEUROSCI.3932-11.2012 CrossRefPubMedGoogle Scholar
  46. Taubert, J., Alais, D., & Burr, D. (2016). Different coding strategies for the perception of stable and changeable facial attributes. Scientific Reports, 6, 32239.  https://doi.org/10.1038/srep32239 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Taubert, J., Van der Burg, E., & Alais, D. (2016). Love at second sight: Sequential dependence of facial attractiveness in an on-line dating paradigm. Scientific Reports, 6, 22740.  https://doi.org/10.1038/srep22740 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wexler, M., Duyck, M., & Mamassian, P. (2015). Persistent states in vision break universality and time invariance. Proceedings of the National Adacemy of Sciences of the United States of America, 112(48), 14990–14995.  https://doi.org/10.1073/pnas.1508847112 CrossRefGoogle Scholar
  49. Whitaker, D., McGraw, P. V., & Levi, D. M. (1997). The influence of adaptation on perceived visual location. Vision Research, 37(16), 2207–2216.  https://doi.org/10.1016/S0042-6989(97)00030-8 CrossRefPubMedGoogle Scholar
  50. Whitney, D. (2002). The influence of visual motion on perceived position. Trends in Cognitive Sciences, 6(5), 211–216.  https://doi.org/10.1016/S1364-6613(02)01887-9 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Whitney, D. (2005). Motion distorts perceived position without awareness of motion. Current Biology, 15(9), R324–326.  https://doi.org/10.1016/j.cub.2005.04.043 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Whitney, D., & Cavanagh, P. (2003). Motion adaptation shifts apparent position without the motion aftereffect. Perception & Psychophysics, 65(7), 1011–1018.  https://doi.org/10.3758/BF03194830 CrossRefGoogle Scholar
  53. Wing, A. M., & Kristofferson, A. B. (1973). Response delays and the timing of discrete motor responses. Perception & Psychophysics, 14(1), 5–12.CrossRefGoogle Scholar
  54. Xia, Y., Leib, A. Y., & Whitney, D. (2016). Serial dependence in the perception of attractiveness. Journal of Vision, 16(15), 28.  https://doi.org/10.1167/16.15.28 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhang, K., Liberman, A., & Whitney, D. (2016). Perceptual stability without working memory. Journal of Vision, 16, 1078.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of PsychologyNortheastern UniversityBostonUSA
  3. 3.Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyUSA
  4. 4.Vision Science GroupUniversity of CaliforniaBerkeleyUSA

Personalised recommendations