Psychonomic Bulletin & Review

, Volume 25, Issue 2, pp 688–695 | Cite as

The SNARC effect is not a unitary phenomenon

  • Sara Basso Moro
  • Roberto Dell’Acqua
  • Simone Cutini
Brief Report

Abstract

Models of the spatial–numerical association of response codes (SNARC) effect—faster responses to small numbers using left effectors, and the converse for large numbers—diverge substantially in localizing the root cause of this effect along the numbers’ processing chain. One class of models ascribes the cause of the SNARC effect to the inherently spatial nature of the semantic representation of numerical magnitude. A different class of models ascribes the effect’s cause to the processing dynamics taking place during response selection. To disentangle these opposing views, we devised a paradigm combining magnitude comparison and stimulus–response switching in order to monitor modulations of the SNARC effect while concurrently tapping both semantic and response-related processing stages. We observed that the SNARC effect varied nonlinearly as a function of both manipulated factors, a result that can hardly be reconciled with a unitary cause of the SNARC effect.

Keywords

SNARC effect Stimulus–response mapping Numerical distance effect Magnitude comparison Spatial–numerical associations 

Supplementary material

13423_2017_1408_MOESM1_ESM.docx (115 kb)
ESM 1 (DOCX 115 kb)

References

  1. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9, 278–291.  https://doi.org/10.1038/nrn2334 CrossRefPubMedGoogle Scholar
  2. Ansari, D., Dhital, B., & Siong, S. C. (2006). Parametric effects of numerical distance on the intraparietal sulcus during passive viewing of rapid numerosity changes. Brain Research, 1067, 181–188.  https://doi.org/10.1016/j.brainres.2005.10.083 CrossRefPubMedGoogle Scholar
  3. Cipora, K., & Nuerk, H.-C. (2013). Is the SNARC effect related to the level of mathematics? No systematic relationship observed despite more power, more repetitions, and more direct assessment of arithmetic skill. Quarterly Journal of Experimental Psychology, 66, 1974–1991.  https://doi.org/10.1080/17470218.2013.772215 CrossRefGoogle Scholar
  4. Cutini, S., Scarpa, F., Scatturin, P., Dell’Acqua, R., & Zorzi, M. (2014). Number-space interactions in the human parietal cortex: Enlightening the SNARC effect with functional near-infrared spectroscopy. Cerebral Cortex, 24, 444–451.  https://doi.org/10.1093/cercor/bhs321 CrossRefPubMedGoogle Scholar
  5. Daar, M., & Pratt, J. (2008). Digits affect actions: The SNARC effect and response selection. Cortex, 44, 400–405.  https://doi.org/10.1016/j.cortex.2007.12.003 CrossRefPubMedGoogle Scholar
  6. De Jong, R. (1994). Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus–response correspondence. Journal of Experimental Psychology, 20, 731–750.  https://doi.org/10.1037/0096-1523.20.4.731 PubMedGoogle Scholar
  7. De Jong, R. (2000). An intention-activation account of residual switch cost. In S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 357–376). Cambridge: MIT Press.Google Scholar
  8. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371–396.  https://doi.org/10.1037/0096-3445.122.3.371 CrossRefGoogle Scholar
  9. Di Rosa, E., Bardi, L., Umiltà, C., Masina, F., Forgione, M., & Mapelli, D. (2017). Transcranial direct current stimulation (tDCS) reveals a dissociation between SNARC and MARC effects: Implication for the polarity correspondence account. Cortex, 93, 68–78.  https://doi.org/10.1016/j.cortex.2017.05.002 CrossRefPubMedGoogle Scholar
  10. Fias, W., van Dijck, J. P., & Gevers, W. (2011). How is number associated with space? The role of working memory. In S. Dehaene & E. M. Brannon (Eds.), Space, time and number in the brain: Searching for the foundations of mathematical thought (pp. 133–148). Burlington: Elsevier/Academic Press.CrossRefGoogle Scholar
  11. Fischer, M. H., & Shaki, S. (2014). Spatial associations in numerical cognition—From single digits to arithmetic. Journal of Experimental Psychology, 67, 1461–1483.  https://doi.org/10.1080/17470218.2014.927515 CrossRefPubMedGoogle Scholar
  12. Ford, N., & Reynolds, M. G. (2016). Do Arabic numerals activate magnitude automatically? Evidence from the psychological refractory period paradigm. Psychonomic Bulletin & Review, 23, 1528–1533.  https://doi.org/10.3758/s13423-016-1020-y CrossRefGoogle Scholar
  13. Gevers, W., Caessens, B., & Fias, W. (2005). Towards a common processing architecture underlying Simon and SNARC effects. European Journal of Cognitive Psychology, 17, 659–673.  https://doi.org/10.1080/09541440540000112 CrossRefGoogle Scholar
  14. Gevers, W., Verguts, T., Reynvoet, B., Caessens, B., & Fias, W. (2006). Numbers and space: A computational model of the SNARC effect. Journal of Experimental Psychology. Human Perception and Performance, 32, 32–44.  https://doi.org/10.1037/0096-1523.32.1.32 CrossRefPubMedGoogle Scholar
  15. Gibson, L. C., & Maurer, D. (2016). Development of SNARC and distance effects and their relation to mathematical and visuospatial abilities. Journal of Experimental Child Psychology, 150, 301–313.  https://doi.org/10.1016/j.jecp.2016.05.009 CrossRefPubMedGoogle Scholar
  16. Heathcote, A., Popiel, S. J., & Mewhort, D. J. (1991). Analysis of response time distributions: An example using the Stroop task. Psychological Bulletin, 109, 340–347.  https://doi.org/10.1037/0033-2909.109.2.340 CrossRefGoogle Scholar
  17. Hirsch, P., Nolden, S., & Koch, I. (2017). Higher-order cognitive control in dual tasks: Evidence from task-pair switching. Journal of Experimental Psychology: Human Perception and Performance, 43, 569–580.  https://doi.org/10.1037/xhp0000309 PubMedGoogle Scholar
  18. Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435–448.  https://doi.org/10.1038/nrn1684 CrossRefPubMedGoogle Scholar
  19. Keus, I. M., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect: Evidence for a response-related origin. Memory & Cognition, 33, 681–695.  https://doi.org/10.3758/BF03195335 CrossRefGoogle Scholar
  20. Liefooghe, B., Verbruggen, F., Vandierendonck, A., Fias, W., & Gevers, W. (2007). Task switching and across-trial distance priming are independent. European Journal of Cognitive Psychology, 19, 1–16.  https://doi.org/10.1080/09541440500492033 CrossRefGoogle Scholar
  21. Mapelli, D., Rusconi, E., & Umiltà, C. (2003). The SNARC effect: An instance of the Simon effect? Cognition, 88, B1–10.  https://doi.org/10.1016/S0010-0277(03)00042-8 CrossRefPubMedGoogle Scholar
  22. Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520.  https://doi.org/10.1038/2151519a0 CrossRefPubMedGoogle Scholar
  23. Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86, 446–461.  https://doi.org/10.1037/0033-2909.86.3.446 CrossRefPubMedGoogle Scholar
  24. Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.  https://doi.org/10.1037/0096-3445.124.2.207 CrossRefGoogle Scholar
  25. Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology. Human Perception and Performance, 29, 92–105.  https://doi.org/10.1037/0096-1523.29.1.92 CrossRefPubMedGoogle Scholar
  26. Sternberg, S. (1969). The discovery of processing stages: Extensions of Donder’s method. Acta Psychologica, 30, 276–315.  https://doi.org/10.1016/0001-6918(69)90055-9 CrossRefGoogle Scholar
  27. Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: Comparison and priming effects in numerical and nonnumerical orders. Psychonomic Bulletin & Review, 15, 419–425.  https://doi.org/10.3758/PBR.15.2.419 CrossRefGoogle Scholar
  28. Van Opstal, F., & Verguts, T. (2011). The origins of the numerical distance effect: The same–different task. Journal of Cognitive Psychology, 23, 112–120.  https://doi.org/10.1080/20445911.2011.466796 CrossRefGoogle Scholar
  29. Van Selst, M., & Jolicœur, P. (1994). A solution to the effect of sample size on outlier elimination. Quarterly Journal of Experimental Psychology, 47A, 631–650.  https://doi.org/10.1080/14640749408401131 CrossRefGoogle Scholar
  30. Wood, G., Nuerk, H.-C., Willmes, K., & Fischer, M. H. (2008). On the cognitive link between space and number: A meta-analysis of the SNARC effect. Psychology Science Quarterly, 50, 489–525.Google Scholar
  31. Zohar-Shai, B., Tzelgov, J., Karni, A., & Rubinsten, O. (2017). It does exist! A left-to-right spatial–numerical association of response codes (SNARC) effect among native Hebrew speakers. Journal of Experimental Psychology: Human Perception and Performance, 43, 719–728.  https://doi.org/10.1037/xhp0000336 PubMedGoogle Scholar
  32. Zorzi, M., Bonato, M., Treccani, B., Scalambrin, G., Marenzi, R., & Priftis, K. (2012). Neglect impairs explicit processing of the mental number line. Frontiers in Human Neuroscience, 6, 125:1–12.  https://doi.org/10.3389/fnhum.2012.00125 Google Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Sara Basso Moro
    • 1
  • Roberto Dell’Acqua
    • 2
    • 3
  • Simone Cutini
    • 2
    • 3
  1. 1.Department of NeuroscienceUniversity of PaduaPaduaItaly
  2. 2.Department of Developmental PsychologyUniversity of PaduaPaduaItaly
  3. 3.Padova Neuroscience CenterUniversity of PaduaPaduaItaly

Personalised recommendations