What do dogs (Canis familiaris) see? A review of vision in dogs and implications for cognition research

  • Sarah-Elizabeth Byosiere
  • Philippe A. Chouinard
  • Tiffani J. Howell
  • Pauleen C. Bennett
Theoretical Review


Over the last 20 years, a large amount of research has been conducted in an attempt to uncover the cognitive abilities of the domestic dog. While substantial advancements have been made, progress has been impeded by the fact that little is known about how dogs visually perceive their external environment. It is imperative that future research determines more precisely canine visual processing capabilities, particularly considering the increasing number of studies assessing cognition via paradigms requiring vision. This review discusses current research on visual cognition and emphasizes the importance of understanding dog visual processing. We review several areas of vision research in domestic dogs, such as sensitivity to light, visual perspective, visual acuity, form perception, and color vision, with a focus on how these abilities may affect performance in cognition tasks. Additionally, we consider the immense diversity seen in dog morphology and explore ways in which these physical differences, particularly in facial morphology, may result in, or perhaps even be caused by, different visual processing capacities in dogs. Finally, we suggest future directions for research in dog vision and cognition.


Visual processing Dog Cognition Morphology 


  1. Aguirre, G. (1978). Retinal degenerations in the dog. I. Rod dysplasia. Experimental Eye Research, 26(3), 233-253.PubMedCrossRefGoogle Scholar
  2. Aguirre, G., & Rubin, L. (1975). The electroretinogram in dogs with inherited cone degeneration. Investigative Ophthalmology & Visual Science, 14(11), 840-847.Google Scholar
  3. Araujo, J., Chan, A., Winka, L., Seymour, P., & Milgram, N. (2004). Dose-specific effects of scopolamine on canine cognition: impairment of visuospatial memory, but not visuospatial discrimination. Psychopharmacology, 175(1), 92-98.PubMedCrossRefGoogle Scholar
  4. Arden, R., Bensky, M. K., & Adams, M. J. (2016). A Review of Cognitive Abilities in Dogs, 1911 Through 2016: More Individual Differences, Please! Current Directions in Psychological Science, 25(5), 307-312.CrossRefGoogle Scholar
  5. Autier-Dérian, D., Deputte, B. L., Chalvet-Monfray, K., Coulon, M., & Mounier, L. (2013). Visual discrimination of species in dogs (Canis familiaris). Animal Cognition, 16(4), 637-651. doi: PubMedCrossRefGoogle Scholar
  6. Baker, J. M., Morath, J., Rodzon, K. S., & Jordan, K. E. (2012). A shared system of representation governing quantity discrimination in canids. Frontiers in Psychology, 3, 387PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bell, M. A., & Fox, N. A. (1997). Individual differences in object permanence performance at 8 months: Locomotor experience and brain electrical activity. Developmental Psychobiology, 31(4), 287-297.PubMedCrossRefGoogle Scholar
  8. Bensky, M. K., Gosling, S. D., & Sinn, D. L. (2013). The world from a dog’s point of view: a review and synthesis of dog cognition research. Advances in the Study of Behaviour, 45, 209-406.CrossRefGoogle Scholar
  9. Bishop, P. O. (1987). Binocular vision. Adler’s physiology of the eye: clinical application. St Louis: CV Mosby, 61989.Google Scholar
  10. Bräuer, J., Kaminski, J., Riedel, J., Call, J., & Tomasello, M. (2006). Making inferences about the location of hidden food: social dog, causal ape. Journal of Comparative Psychology, 120(1), 38.PubMedCrossRefGoogle Scholar
  11. Burman, O., McGowan, R., Mendl, M., Norling, Y., Paul, E., Rehn, T., & Keeling, L. (2011). Using judgement bias to measure positive affective state in dogs. Applied Animal Behaviour Science, 132(3), 160-168.CrossRefGoogle Scholar
  12. Burns, M. S., Bellhorn, R. W., Impellizzeri, C. W., Aguirre, G. D., & Laties, A. M. (1988). Development of hereditary tapetal degeneration in the beagle dog. Current Eye Research, 7(2), 103-114.PubMedCrossRefGoogle Scholar
  13. Byosiere, S. E., Feng, L. C., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2017a). Relational concept learning in domestic dogs: Performance on a two-choice size discrimination task generalises to novel stimuli. Behavioural Processes, 145, 93-101.Google Scholar
  14. Byosiere, S.-E., Feng, L. C., Rutter, N. J., Woodhead, J. K., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2017b). Do dogs see the Ponzo illusion? Animal Behavior and Cognition, 44(4), 396-412.
  15. Byosiere, S.-E., Feng, L. C., Woodhead, J. K., Rutter, N. J., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2016). Visual perception in domestic dogs: susceptibility to the Ebbinghaus–Titchener and Delboeuf illusions. Animal cognition, 1–14. doi:
  16. Cavoto, K. K., & Cook, R. G. (2001). Cognitive precedence for local information in hierarchical stimulus processing by pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 27(1), 3.PubMedGoogle Scholar
  17. Chouinard, P. A., Noulty, W. A., Sperandio, I., & Landry, O. (2013). Global processing during the Müller-Lyer illusion is distinctively affected by the degree of autistic traits in the typical population. Experimental Brain Research, 230(2), 219-231.PubMedCrossRefGoogle Scholar
  18. Chouinard, P. A., Unwin, K. L., Landry, O., & Sperandio, I. (2016). Susceptibility to Optical Illusions Varies as a Function of the Autism-Spectrum Quotient but not in Ways Predicted by Local–Global Biases. Journal of Autism and Developmental Disorders, 46(6), 2224-2239.PubMedCrossRefGoogle Scholar
  19. Collier-Baker, E., Davis, J. M., & Suddendorf, T. (2004). Do dogs (Canis familiaris) understand invisible displacement? Journal of Comparative Psychology, 118(4), 421.PubMedCrossRefGoogle Scholar
  20. Craik, K. J. W. (1938). The effect of adaptation on differential brightness discrimination. The Journal of Physiology, 92(4), 406-421. doi: PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dorey, N. R., Udell, M. A., & Wynne, C. D. (2009). Breed differences in dogs sensitivity to human points: a meta-analysis. Behavioural Processes, 81(3), 409-415.PubMedCrossRefGoogle Scholar
  22. Dorey, N. R., Udell, M. A., & Wynne, C. D. (2010). When do domestic dogs, Canis familiaris, start to understand human pointing? The role of ontogeny in the development of interspecies communication. Animal Behaviour, 79(1), 37-41.CrossRefGoogle Scholar
  23. Douglas, R., & Jeffery, G. (2014). The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proceedings of the Royal Society of London B: Biological Sciences, 281(1780), 20132995.CrossRefGoogle Scholar
  24. Duke-Elder, S. (1958). System of Ophthalmology Vol. 1 The Eye in Evolution: Henry Kimpton.Google Scholar
  25. Evans, H. E., & De Lahunta, A. (2013). Miller's Anatomy of the Dog: Elsevier Health Sciences.Google Scholar
  26. Feng, L. C., Chouinard, P. A., Howell, T. J., & Bennett, P. C. (2016). Why do animals differ in their susceptibility to geometrical illusions? Psychonomic bulletin & review, 1–15.Google Scholar
  27. Fiset, S., Beaulieu, C., & Landry, F. (2002). Duration of dogs' (Canis familiaris) working memory in search for disappearing objects. Animal Cognition, 6(1), 1-10. doi: PubMedCrossRefGoogle Scholar
  28. Frank, H. (2011). Wolves, dogs, rearing and reinforcement: complex interactions underlying species differences in training and problem-solving performance. Behavior Genetics, 41(6), 830-839.PubMedCrossRefGoogle Scholar
  29. Gácsi, M., McGreevy, P., Kara, E., & Miklósi, Á. (2009). Effects of selection for cooperation and attention in dogs. Behavioral and Brain Functions, 5(1), 31.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gagnon, S., & Dore, F. Y. (1992). Search behavior in various breeds of adult dogs (Canis familiaris): Object permanence and olfactory cues. Journal of Comparative Psychology, 106(1), 58-68. doi: PubMedCrossRefGoogle Scholar
  31. Gagnon, S., & Doré, F. Y. (1994). Cross-sectional study of object permanence in domestic puppies (Canis familiaris). Journal of Comparative Psychology, 108(3), 220.PubMedCrossRefGoogle Scholar
  32. Granar, M. I., Nilsson, B. R., & Hamberg-Nyström, H. L. (2011). Normal color variations of the canine ocular fundus, a retrospective study in Swedish dogs. Acta Veterinaria Scandinavica, 53(1), 13.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gregory, R. L. (2015). Eye and brain: The psychology of seeing: Princeton university press.Google Scholar
  34. Griebel, U., & Schmid, A. (1992). Color vision in the California sea lion (Zalophus californianus). Vision Research, 32(3), 477-482. doi: PubMedCrossRefGoogle Scholar
  35. Haber, R. N., & Hershenson, M. (1973). The psychology of visual perception: Holt, Rinehart & Winston.Google Scholar
  36. Hare, B., Brown, M., Williamson, C., & Tomasello, M. (2002). The domestication of social cognition in dogs. Science, 298(5598), 1634-1636.PubMedCrossRefGoogle Scholar
  37. Hare, B., & Tomasello, M. (1999). Domestic dogs (Canis familiaris) use human and conspecific social cues to locate hidden food. Journal of Comparative Psychology, 113(2), 173.CrossRefGoogle Scholar
  38. Hare, B., & Tomasello, M. (2005). Human-like social skills in dogs? Trends in Cognitive Sciences, 9(9), 439-444. doi: PubMedCrossRefGoogle Scholar
  39. Hart, B. L. (1995). Analysing breed and gender differences in behaviour. The domestic dog: Its evolution, behaviour and interactions with people, 65-77.Google Scholar
  40. Healy, K., McNally, L., Ruxton, G. D., Cooper, N., & Jackson, A. L. (2013). Metabolic rate and body size are linked with perception of temporal information. Animal Behaviour, 86(4), 685-696. doi: PubMedPubMedCentralCrossRefGoogle Scholar
  41. Helton, W. S., & Helton, N. D. (2010). Physical size matters in the domestic dog's (Canis lupus familiaris) ability to use human pointing cues. Behavioural Processes, 85(1), 77-79.PubMedCrossRefGoogle Scholar
  42. Huber, L., Racca, A., Scaf, B., Virányi, Z., & Range, F. (2013). Discrimination of familiar human faces in dogs (Canis familiaris). Learning and Motivation, 44(4), 258-269.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Jacobs, G. H. (1996). Primate photopigments and primate color vision. Proceedings of the National Academy of Sciences, 93(2), 577-581.CrossRefGoogle Scholar
  44. Jacobs, G. H., Deegan, J. F., Crognale, M. A., & Fenwick, J. A. (1993). Photopigments of dogs and foxes and their implications for canid vision. Visual Neuroscience, 10(01), 173-180.PubMedCrossRefGoogle Scholar
  45. Kaminski, J. (2009). Dogs (Canis familiaris) are adapted to receive human communication Neurobiology of “Umwelt” (pp. 103-107): Springer.Google Scholar
  46. Kaminski, J., Tempelmann, S., Call, J., & Tomasello, M. (2009). Domestic dogs comprehend human communication with iconic signs. Developmental Science, 12(6), 831-837.PubMedCrossRefGoogle Scholar
  47. Kandel, E., & Schwartz, J. (2000). Jessell. TM. Principles of Neural Science: New York: McGraw Hill.Google Scholar
  48. Karn, H. W., & Munn, N. L. (1932). Visual pattern discrimination in the dog. Pedagogical Seminary and Journal of Genetic Psychology, 40(2), 363-374.CrossRefGoogle Scholar
  49. Kasparson, A. A., Badridze, J., & Maximov, V. V. (2013). Colour cues proved to be more informative for dogs than brightness. Proceedings of the Royal Society B: Biological Sciences, 280(1766). doi:
  50. Kemp, C., & Jacobson, S. (1992). Rhodopsin levels in the central retinas of normal miniature poodles and those with progressive rod-cone degeneration. Experimental Eye Research, 54(6), 947-956.PubMedCrossRefGoogle Scholar
  51. Kerswell, K. J., Butler, K. L., Bennett, P., & Hemsworth, P. H. (2010). The relationships between morphological features and social signalling behaviours in juvenile dogs: the effect of early experience with dogs of different morphotypes. Behavioural Processes, 85(1), 1-7.PubMedCrossRefGoogle Scholar
  52. Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(12), 712-719. doi: PubMedCrossRefGoogle Scholar
  53. Koch, S., & Rubin, L. (1972). Distribution of cones in retina of the normal dog. American Journal of Veterinary Research, 33(2), 361-363.PubMedGoogle Scholar
  54. Kraft, T. W., Schneeweis, D. M., & Schnapf, J. L. (1993). Visual transduction in human rod photoreceptors. The Journal of Physiology, 464, 747-765.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lamb, T. D., Collin, S. P., & Pugh, E. N. (2007). Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nature Reviews Neuroscience, 8(12), 960-976.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Laycock, R., Crewther, S. G., & Crewther, D. P. (2007). A role for the ‘magnocellular advantage’ in visual impairments in neurodevelopmental and psychiatric disorders. Neuroscience & Biobehavioral Reviews, 31(3), 363-376. doi: CrossRefGoogle Scholar
  57. Lesiuk, T., & Braekevelt, C. (1983). Fine structure of the canine tapetum lucidum. Journal of Anatomy, 136(Pt 1), 157.PubMedPubMedCentralGoogle Scholar
  58. Masland, R. H., & Martin, P. R. (2007). The unsolved mystery of vision. Current Biology, 17(15), R577-R582.PubMedCrossRefGoogle Scholar
  59. McGreevy, P., Grassi, T. D., & Harman, A. M. (2003). A strong correlation exists between the distribution of retinal ganglion cells and nose length in the dog. Brain, Behavior and Evolution, 63(1), 13-22.CrossRefGoogle Scholar
  60. Miklösi, Á., Polgárdi, R., Topál, J., & Csányi, V. (1998). Use of experimenter-given cues in dogs. Animal Cognition, 1(2), 113-121.PubMedCrossRefGoogle Scholar
  61. Miletto Petrazzini, M. E., Bisazza, A., & Agrillo, C. (2016). Do domestic dogs (Canis lupus familiaris) perceive the Delboeuf illusion? Animal cognition, 1-8. doi:
  62. Milgram, N. W., Head, E., Weiner, E., & Thomas, E. (1994). Cognitive functions and aging in the dog: acquisition of nonspatial visual tasks. Behavioral Neuroscience, 108(1), 57.PubMedCrossRefGoogle Scholar
  63. Milgram, N. W., Head, E., Zicker, S. C., Ikeda-Douglas, C., Murphey, H., Muggenberg, B. A., … Cotman, C. W. (2004). Long-term treatment with antioxidants and a program of behavioral enrichment reduces age-dependent impairment in discrimination and reversal learning in beagle dogs. Experimental Gerontology, 39(5), 753-765.PubMedCrossRefGoogle Scholar
  64. Miller, R. J. (1997). Pictorial Depth Cue Orientation Influences the Magnitude of Perceived Depth. Visual Arts Research, 23(1), 97-124.Google Scholar
  65. Miller, H. C., Gipson, C. D., Vaughan, A., Rayburn-Reeves, R., & Zentall, T. R. (2009). Object permanence in dogs: invisible displacement in a rotation task. Psychonomic Bulletin & Review, 16(1), 150-155.CrossRefGoogle Scholar
  66. Miller, P. E., & Murphy, C. J. (1995). Vision in dogs. Journal of the American Veterinary Medical Association, 207, 1623-1634.PubMedGoogle Scholar
  67. Mongillo, P., Pitteri, E., Sambugaro, P., Carnier, P., & Marinelli, L. (2016). Global bias reliability in dogs (Canis familiaris). Animal Cognition, 1-9. doi:
  68. Mowat, F. M., Petersen-Jones, S. M., Williamson, H., Williams, D. L., Luthert, P. J., Ali, R. R., & Bainbridge, J. W. (2008). Topographical characterization of cone photoreceptors and the area centralis of the canine retina. Molecular Vision, 14, 2518-2527.PubMedPubMedCentralGoogle Scholar
  69. Murphy, C. J., Mutti, D. O., Zadnik, K., & Ver Hoeve, J. (1997). Effect of optical defocus on visual acuity in dogs. American Journal of Veterinary Research, 58(4), 414-418.PubMedGoogle Scholar
  70. Nagasawa, M., Murai, K., Mogi, K., & Kikusui, T. (2011). Dogs can discriminate human smiling faces from blank expressions. Animal Cognition, 14(4), 525-533. doi: PubMedCrossRefGoogle Scholar
  71. Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9(3), 353-383.CrossRefGoogle Scholar
  72. Neitz, J., Geist, T., & Jacobs, G. H. (1989). Color vision in the dog. Visual Neuroscience, 3(02), 119-125.PubMedCrossRefGoogle Scholar
  73. Nießner, C., Denzau, S., Malkemper, E. P., Gross, J. C., Burda, H., Winklhofer, M., & Peichl, L. (2016). Cryptochrome 1 in retinal cone photoreceptors suggests a novel functional role in mammals. Scientific Reports, 6, 21848.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Ollivier, F., Samuelson, D., Brooks, D., Lewis, P., Kallberg, M., & Komáromy, A. (2004). Comparative morphology of the tapetum lucidum (among selected species). Veterinary Ophthalmology, 7(1), 11-22.PubMedCrossRefGoogle Scholar
  75. Parkes, J., Aguirre, G., Rockey, J., & Liebman, P. (1982). Progressive rod-cone degeneration in the dog: characterization of the visual pigment. Investigative Ophthalmology & Visual Science, 23(5), 674-678.Google Scholar
  76. Parry, H. (1953). Degenerations of the dog retina: I. Structure and development of the retina of the normal dog. The British Journal of Ophthalmology, 37(7), 385.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Peichl, L. (1992). Topography of ganglion cells in the dog and wolf retina. Journal of Comparative Neurology, 324(4), 603-620.PubMedCrossRefGoogle Scholar
  78. Petrazzini, M. E. M., & Wynne, C. D. (2016). What counts for dogs (Canis lupus familiaris) in a quantity discrimination task? Behavioural Processes, 122, 90-97.CrossRefGoogle Scholar
  79. Pitteri, E., Mongillo, P., Carnier, P., & Marinelli, L. (2014). Hierarchical stimulus processing by dogs (Canis familiaris). Animal Cognition, 17(4), 869-877.PubMedCrossRefGoogle Scholar
  80. Pitteri, E., Mongillo, P., Carnier, P., Marinelli, L., & Huber, L. (2014). Part-Based and Configural Processing of Owner's Face in Dogs. PLoS One, 9(9), e108176. doi: PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pongrácz, P., Miklósi, Á., Dóka, A., & Csányi, V. (2003). Successful Application of Video-Projected Human Images for Signalling to Dogs. Ethology, 109(10), 809-821. doi: CrossRefGoogle Scholar
  82. Pongrácz, P., Ujvári, V., Faragó, T., Miklósi, Á., & Péter, A. (2017). Do you see what I see? The difference between dog and human visual perception may affect the outcome of experiments. Behavioural Processes, 140, 53-60. doi: PubMedCrossRefGoogle Scholar
  83. Pretterer, G., Bubna-Littitz, H., Windischbauer, G., Gabler, C., & Griebel, U. (2004). Brightness discrimination in the dog. Journal of Vision, 4(3), 10-10. doi: CrossRefGoogle Scholar
  84. Purves, D., Augustine, G., & Fitzpatrick, D. (2001). Neuroscience. 2nd edition.: Sinauer Associates.Google Scholar
  85. Racca, A., Amadei, E., Ligout, S., Guo, K., Meints, K., & Mills, D. (2010). Discrimination of human and dog faces and inversion responses in domestic dogs (Canis familiaris). Animal Cognition, 13(3), 525-533.PubMedCrossRefGoogle Scholar
  86. Racca, A., Guo, K., Meints, K., & Mills, D. S. (2012). Reading Faces: Differential Lateral Gaze Bias in Processing Canine and Human Facial Expressions in Dogs and 4-Year-Old Children. PLoS ONE, 7(4), e36076. doi: PubMedPubMedCentralCrossRefGoogle Scholar
  87. Range, F., Aust, U., Steurer, M., & Huber, L. (2008). Visual categorization of natural stimuli by domestic dogs. Animal Cognition, 11(2), 339-347.PubMedCrossRefGoogle Scholar
  88. Roberts, T., McGreevy, P., & Valenzuela, M. (2010). Human induced rotation and reorganization of the brain of domestic dogs. PLoS One, 5(7), e11946.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rosengren, A. (1969). Experiments in colour discrimination in dogs: Societas pro fauna et flora Fennica.Google Scholar
  90. Schmitt, V., Kröger, I., Zinner, D., Call, J., & Fischer, J. (2013). Monkeys perform as well as apes and humans in a size discrimination task. Animal Cognition, 16(5), 829-838. doi: PubMedPubMedCentralCrossRefGoogle Scholar
  91. Scholtyssek, C., Kelber, A., & Dehnhardt, G. (2008). Brightness discrimination in the harbor seal (Phoca vitulina). Vision Research, 48(1), 96-103. doi: PubMedCrossRefGoogle Scholar
  92. Sherman, J. A., & Chouinard, P. A. (2016). Attractive Contours of the Ebbinghaus Illusion. Perceptual & Motor Skills, 122(1), 88-95.CrossRefGoogle Scholar
  93. Somppi, S., Törnqvist, H., Hänninen, L., Krause, C., & Vainio, O. (2012). Dogs do look at images: eye tracking in canine cognition research. Animal Cognition, 15(2), 163-174. doi: PubMedCrossRefGoogle Scholar
  94. Soproni, K., Miklósi, Á., Topál, J., & Csányi, V. (2001). Comprehension of human communicative signs in pet dogs (Canis familiaris). Journal of Comparative Psychology, 115(2), 122.PubMedCrossRefGoogle Scholar
  95. Soproni, K., Miklósi, A., Topál, J., & Csányi, V. (2002). Dogs'(Canis familaris) responsiveness to human pointing gestures. Journal of Comparative Psychology, 116(1), 27.PubMedCrossRefGoogle Scholar
  96. Stone, C. (1921). Notes on light discrimination in the dog. Journal of Comparative Psychology, 1(5), 413-431.CrossRefGoogle Scholar
  97. Tanaka, T., Ikeuchi, E., Mitani, S., Eguchi, Y., & Uetake, K. (2000). Studies on the visual acuity of dogs using shape discrimination learning. Nihon Chikusan Gakkaiho, 71(6), 614-620.CrossRefGoogle Scholar
  98. Tanaka, T., Watanabe, T., Eguchi, Y., & Yoshimoto, T. (2000). Color Discrimination in Dogs. Nihon Chikusan Gakkaiho, 71(3), 300-304. doi: CrossRefGoogle Scholar
  99. Tapp, P. D., Siwak, C. T., Head, E., Cotman, C. W., Murphey, H., Muggenburg, B. A., … Milgram, N. W. (2004). Concept abstraction in the aging dog: development of a protocol using successive discrimination and size concept tasks. Behavioural Brain Research, 153(1), 199-210. doi: PubMedCrossRefGoogle Scholar
  100. Tauzin, T., Csík, A., Kis, A., & Topál, J. (2015). What or where? The meaning of referential human pointing for dogs (Canis familiaris). Journal of Comparative Psychology, 129(4), 334.PubMedCrossRefGoogle Scholar
  101. Udell, M. A., Dorey, N. R., & Wynne, C. D. (2008). Wolves outperform dogs in following human social cues. Animal Behaviour, 76(6), 1767-1773.CrossRefGoogle Scholar
  102. Udell, M. A., & Wynne, C. D. (2008). A review of domestic dogs' (canis familiaris) human-like behavior: or why behavior analysts should stop worrying and love their dogs. Journal of the Experimental Analysis of Behavior, 89(2), 247-261.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Virányi, Z., Gácsi, M., Kubinyi, E., Topál, J., Belényi, B., Ujfalussy, D., & Miklósi, Á. (2008). Comprehension of human pointing gestures in young human-reared wolves (Canis lupus) and dogs (Canis familiaris). Animal Cognition, 11(3), 373-387.PubMedCrossRefGoogle Scholar
  104. Walk, R. D., & Gibson, E. J. (1961). A comparative and analytical study of visual depth perception. Psychological Monographs: General and Applied, 75(15), 1.CrossRefGoogle Scholar
  105. Walls, G. L. (1942). The vertebrate eye and its adaptive radiation.Google Scholar
  106. Ward, C., & Smuts, B. B. (2007). Quantity-based judgments in the domestic dog (Canis lupus familiaris). Animal Cognition, 10(1), 71-80.PubMedCrossRefGoogle Scholar
  107. Wayne, R. K. (1986a). Cranial morphology of domestic and wild canids: the influence of development on morphological change. Evolution, 243–261.Google Scholar
  108. Wayne, R. K. (1986b). Limb morphology of domestic and wild canids: the influence of development on morphologic change. Journal of Morphology, 187(3), 301-319.PubMedCrossRefGoogle Scholar
  109. Wayne, R. K., & Ostrander, E. A. (2007). Lessons learned from the dog genome. Trends in Genetics, 23(11), 557-567.PubMedCrossRefGoogle Scholar
  110. Wynne, C. D., Udell, M. A., & Lord, K. A. (2008). Ontogeny's impacts on human–dog communication. Animal Behaviour, 76(4), e1-e4.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.School of Psychology and Public HealthLa Trobe UniversityBendigoAustralia

Personalised recommendations