Psychonomic Bulletin & Review

, Volume 25, Issue 2, pp 785–792 | Cite as

Can a single model account for both risky choices and inter-temporal choices? Testing the assumptions underlying models of risky inter-temporal choice

Brief Report

Abstract

There is growing interest in modelling how people make choices that involve both risks and delays, i.e., risky inter-temporal choices. We investigated an untested assumption underlying several proposed risky inter-temporal choice models: that pure risky choices and pure inter-temporal choices are special cases of risky inter-temporal choice. We tested this assumption by presenting a single group of participants with risky choices and inter-temporal choices. We then compared the performance of a model that is fit to both choice types simultaneously, with the performance of separate models fit to the risky choice and inter-temporal choice data. We find, using Bayesian model comparison, that the majority of participants are best fit by a single model that incorporates both risky and inter-temporal choices. This result supports the assumption that risky choices and inter-temporal choices may be special cases of risky inter-temporal choice. Our results also suggest that, under the conditions of our experiment, interpretation of monetary value is very similar in risky choices and inter-temporal choices.

Keywords

Risky choice Inter-temporal choice Utility 

Notes

Acknowledgements

BRN was supported by an Australian Research Council Future Fellowship (FT110100151), and an ARC Discovery Project (DP 140101145). CD was supported by an Australian Research Council DECRA Fellowship (DE130100129). AL was supported by a UNSW PhD Scholarship.

Supplementary material

13423_2017_1330_MOESM1_ESM.pdf (334 kb)
ESM 1 (PDF 333 kb)

References

  1. Abdellaoui, M., Bleichrodt, H., l'Haridon, O., & Paraschiv, C. (2013). Is there one unifying concept of utility? an experimental comparison of utility under risk and utility over time. Management Science, 59(9), 2153–2169. doi: 10.1287/mnsc.1120.1690 CrossRefGoogle Scholar
  2. Baucells, M., & Heukamp, F. H. (2010). Common ratio using delay. Theory and Decision, 68(1-2), 149–158. doi: 10.1007/s11238-008-9130-2 CrossRefGoogle Scholar
  3. Baucells, M., & Heukamp, F. H. (2012). Probability and time trade-off. Management Science, 58(4), 831–842. doi: 10.1287/mnsc.1110.1450 CrossRefGoogle Scholar
  4. Doyle, J. R. (2013). Survey of time preference, delay discounting models. Judgment and Decision Making, 8(2), 116–135.Google Scholar
  5. Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47, 263–291.CrossRefGoogle Scholar
  6. Kirby, K. N., & Marakovic, N. N. (1995). Modeling myopic decisions - evidence for hyperbolic delay-discounting within-subjects and amounts. Organizational Behavior and Human Decision Processes, 64(1), 22–30. doi: 10.1006/obhd.1995.1086 CrossRefGoogle Scholar
  7. Luckman, A., Donkin, C., & Newell, B. R. (in press). People wait longer when the alternative is risky: The relation between preferences in risky and inter-temporal choice. Journal of Behavioral Decision Making. doi: 10.1002/bdm.2025
  8. Luckman, A., Donkin, C., & Newell, B. R. (2015). Exploring the concept of utility: Are separate value functions required for risky and inter-temporal choice? In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Conference of the Cognitive Science Society (pp. 1440–1446). Austin: Cognitive Science Society.Google Scholar
  9. Myerson, J., Green, L., Hanson, J. S., Holt, D. D., & Estle, S. J. (2003). Discounting delayed and probabilistic rewards: Processes and traits. Journal of Economic Psychology, 24(5), 619–635. doi: 10.1016/s0167-4870(03)00005-9 CrossRefGoogle Scholar
  10. Myerson, J., Green, L., & Morris, J. (2011). Modeling the effect of reward amount on probability discounting. Journal of the Experimental Analysis of Behavior, 95(2), 175–187. doi: 10.1901/jeab.2011.95-175 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Nilsson, H., Rieskamp, J., & Wagenmakers, E. J. (2011). Hierarchical Bayesian parameter estimation for cumulative prospect theory. Journal of Mathematical Psychology, 55(1), 84–93. doi: 10.1016/j.jmp.2010.08.006 CrossRefGoogle Scholar
  12. Prelec, D. (1998). The probability weighting function. Econometrica, 66(3), 497–527. doi: 10.2307/2998573 CrossRefGoogle Scholar
  13. Rachlin, H., Raineri, A., & Cross, D. (1991). Subjective probability and delay. Journal of the Experimental Analysis of Behavior, 55(2), 233–244. doi: 10.1901/jeab.1991.55-233 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Rieskamp, J. (2008). The probabilistic nature of preferential choice. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(6), 1446–1465. doi: 10.1037/a0013646 PubMedGoogle Scholar
  15. Scholten, M., & Read, D. (2014). Prospect theory and the "forgotten" fourfold pattern of risk preferences. Journal of Risk and Uncertainty, 48(1), 67–83. doi: 10.1007/s11166-014-9183-2 CrossRefGoogle Scholar
  16. Stevens, S. S. (1961). To honor Fechner and repeal his law: A power function, not a log function, describes the operating characteristic of a sensory system. Science, 133(3446), 80–86. doi: 10.1126/science.133.3446.80 CrossRefPubMedGoogle Scholar
  17. Stott, H. P. (2006). Cumulative prospect theory's functional menagerie. Journal of Risk and Uncertainty, 32(2), 101–130. doi: 10.1007/s11166-006-8289-6 CrossRefGoogle Scholar
  18. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323. doi: 10.1007/Bf00122574 CrossRefGoogle Scholar
  19. Vandekerckhove, J., Matzke, D., & Wagenmakers, E. J. (2015). Model comparison and the principle of parsimony. In J. R. Busemeyer, J. Townsend, Z. J. Wang, & A. Aidels (Eds.), Oxford handbook of computational and mathematical psychology (pp. 300–319). Oxford: Oxford University Press.Google Scholar
  20. Vanderveldt, A., Green, L., & Myerson, J. (2015). Discounting of monetary rewards that are both delayed and probabilistic: Delay and probability combine multiplicatively, not additively. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(1), 148–162. doi: 10.1037/xlm0000029 PubMedGoogle Scholar
  21. Vincent, B. T. (2016). Hierarchical Bayesian estimation and hypothesis testing for delay discounting tasks. Behavior Research Methods, 48(4), 1608–1620. doi: 10.3758/s13428-015-0672-2 CrossRefPubMedGoogle Scholar
  22. Vlaev, I., Chater, N., Stewart, N., & Brown, G. D. A. (2011). Does the brain calculate value? Trends in Cognitive Sciences, 15(11), 546–554. doi: 10.1016/j.tics.2011.09.008 CrossRefPubMedGoogle Scholar
  23. Yi, R., de la Piedad, X., & Bickel, W. K. (2006). The combined effects of delay and probability in discounting. Behavioural Processes, 73(2), 149–155. doi: 10.1016/j.beproc.2006.05.001 CrossRefPubMedGoogle Scholar
  24. Zauberman, G., Kim, B. K., Malkoc, S. A., & Bettman, J. R. (2009). Discounting time and time discounting: subjective time perception and intertemporal preferences. Journal of Marketing Research, 46(4), 543–556.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.School of PsychologyUniversity of New South WalesSydneyAustralia
  2. 2.Center for Economic Psychology, Department of PsychologyUniversity of BaselBaselSwitzerland

Personalised recommendations