Psychonomic Bulletin & Review

, Volume 25, Issue 2, pp 651–657 | Cite as

Unexpected events disrupt visuomotor working memory and increase guessing

  • R. Dawn Finzi
  • Bradley R. Postle
  • Timothy F. Brady
  • Adam R. Aron
Brief Report

Abstract

When an unexpected event, such as a car horn honking, occurs in daily life, it often disrupts our train of thought. In the lab, this effect was recently modeled with a task in which verbal working memory (WM) was disrupted by unexpected auditory events (Wessel et al. in Nature Communications, 7, 11195, 2016). Here we tested whether this effect extends to a different type of WM—namely, visuomotor. We found that unexpected auditory events similarly decremented visuomotor WM. Moreover, this effect persisted for many more trials than had previously been shown for verbal WM, and the effect occurred for two different types of unexpected auditory events. Furthermore, we found that unexpected events decremented WM by decreasing the quantity, but not necessarily the quality, of items stored. These results showed an impact of unexpected events on visuomotor WM that was statistically robust and endured across time. They also showed that the effect was based on an increase in guessing, consistent with a neuroscience-inspired theory that unexpected events “wipe out” WM by stopping the ongoing maintenance of the trace. This new task paradigm is an excellent vehicle for further explorations of distractibility.

Keywords

Inhibitory control Unexpected events Working memory 

Notes

Author note

The authors thank Fabrice Parmentier and Sirawaj Itthiipuripat for helpful advice on the task design, and Francesco Marini for programming. This research was funded by grants from the National Institutes of Health (R21 NS085543) and the James S. McDonnell Foundation (#220020375).

References

  1. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15, 106–111. doi: 10.1111/j.0963-7214.2004.01502006.x CrossRefPubMedGoogle Scholar
  2. Awh, E., Vogel, E. K., & Oh, S. H. (2006). Interactions between attention and working memory. Neuroscience, 139, 201–208. doi: 10.1016/j.neuroscience.2005.08.023 CrossRefPubMedGoogle Scholar
  3. Banich, M. T., Mackiewicz Seghete, K. L., Depue, B. E., & Burgess, G. C. (2015). Multiple modes of clearing one’s mind of current thoughts: Overlapping and distinct neural systems. Neuropsychologia, 69, 105–117. doi: 10.1016/j.neuropsychologia.2015.01.039 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bays, P. M., Catalao, R. F., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 7.1–11. doi: 10.1167/9.10.7 CrossRefGoogle Scholar
  5. Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11(5), 4. doi: 10.1167/11.5.4 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi: 10.1163/156856897X00357 CrossRefPubMedGoogle Scholar
  7. Chatham, C. H., & Badre, D. (2015). Multiple gates on working memory. Current Opinion in Behavioral Science, 1, 23–31. doi: 10.1016/j.cobeha.2014.08.001 CrossRefGoogle Scholar
  8. Cools, R., Miyakawa, A., Sheridan, M., & D’Esposito, M. (2010). Enhanced frontal function in Parkinson’s disease. Brain, 133, 225–233. doi: 10.1093/brain/awp301 CrossRefPubMedGoogle Scholar
  9. Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. Dissertation Abstracts International: Section B. Sciences and Engineering, 34(2), 891.Google Scholar
  10. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114. doi: 10.1017/S0140525X01003922. disc. 114–185.CrossRefPubMedGoogle Scholar
  11. di Pellegrino, G., & Wise, S. P. (1993). Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. Journal of Neuroscience, 13, 1227–1243.CrossRefPubMedGoogle Scholar
  12. Ester, E. F., Zilber, E., & Serences, J. T. (2015). Substitution and pooling in visual crowding induced by similar and dissimilar distractors. Journal of Vision, 15(1), 4. doi: 10.1167/15.1.4. 1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fougnie, D., Suchow, J. W., & Alvarez, G. A. (2012). Variability in the quality of visual working memory. Nature Communications, 3, 1229. doi: 10.1038/ncomms2237 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gazzaley, A., Cooney, J. W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8, 1298–1300. doi: 10.1038/nn1543 CrossRefPubMedGoogle Scholar
  15. Goodale, M. A. (1998). Visuomotor control: Where does vision end and action begin? Current Biology, 8, R489–R491.CrossRefPubMedGoogle Scholar
  16. Hakun, J. G., & Ravizza, S. M. (2016). Ventral fronto-parietal contributions to the disruption of visual working memory storage. NeuroImage, 124, 783–793. doi: 10.1016/j.neuroimage.2015.09.056 CrossRefPubMedGoogle Scholar
  17. Horstmann, G. (2006). Latency and duration of the action interruption in surprise. Cognition and Emotion, 20, 242–273. doi: 10.1080/02699930500262878 CrossRefGoogle Scholar
  18. Leiva, A., Parmentier, F. B., Elchlepp, H., & Verbruggen, F. (2015). Reorienting the mind: The impact of novel sounds on go/no-go performance. Journal of Experimental Psychology: Human Perception and Performance, 41, 1197–1202. doi: 10.1037/xhp0000111 PubMedGoogle Scholar
  19. Levy, B. J., & Anderson, M. C. (2002). Inhibitory processes and the control of memory retrieval. Trends in Cognitive Sciences, 6, 299–305.CrossRefPubMedGoogle Scholar
  20. Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17, 347–356. doi: 10.1038/nn.3655 CrossRefPubMedPubMedCentralGoogle Scholar
  21. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103–107. doi: 10.1038/nn2024 CrossRefPubMedGoogle Scholar
  22. Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R. (2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115, 140–144. doi: 10.1016/j.clinph.2003.04.001 CrossRefPubMedGoogle Scholar
  23. Parmentier, F. B. (2008). Towards a cognitive model of distraction by auditory novelty: The role of involuntary attention capture and semantic processing. Cognition, 109, 345–362. doi: 10.1016/j.cognition.2008.09.005 CrossRefPubMedGoogle Scholar
  24. Parmentier, F. B. (2014). The cognitive determinants of behavioral distraction by deviant auditory stimuli: A review. Psychological Research, 78, 321–338. doi: 10.1007/s00426-013-0534-4 CrossRefPubMedGoogle Scholar
  25. Parmentier, F. B., Elsley, J. V., Andres, P., & Barcelo, F. (2011). Why are auditory novels distracting? Contrasting the roles of novelty, violation of expectation and stimulus change. Cognition, 119, 374–380. doi: 10.1016/j.cognition.2011.02.001 CrossRefPubMedGoogle Scholar
  26. Rademaker, R. L., Bloem, I. M., De Weerd, P., & Sack, A. T. (2015). The impact of interference on short-term memory for visual orientation. Journal of Experimental Psychology: Human Perception and Performance, 41, 1650–1665. doi: 10.1037/xhp0000110 PubMedGoogle Scholar
  27. Rissman, J., Gazzaley, A., & D’Esposito, M. (2009). The effect of non-visual working memory load on top-down modulation of visual processing. Neuropsychologia, 47, 1637–1646. doi: 10.1016/j.neuropsychologia.2009.01.036 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolbox. Journal of Vision, 13(10), 9. doi: 10.1167/13.10.9 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Suchow, J. W., Fougnie, D., Brady, T. F., & Alvarez, G. A. (2014). Terms of the debate on the format and structure of visual memory. Attention, Perception, & Psychophysics, 76, 2071–2079. doi: 10.3758/s13414-014-0690-7 CrossRefGoogle Scholar
  30. van den Berg, R., Shin, H., Chou, W. C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual short-term memory limitations. Proceedings of the National Academy of Sciences, 109, 8780–8785. doi: 10.1073/pnas.1117465109 CrossRefGoogle Scholar
  31. Wessel, J. R., & Aron, A. R. (2013). Unexpected events induce motor slowing via a brain mechanism for action-stopping with global suppressive effects. Journal of Neuroscience, 33, 18481–18491. doi: 10.1523/JNEUROSCI.3456-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wessel, J. R., & Aron, A. R. (2017). On the globality of motor suppression: Unexpected events and their influence on behavior and cognition. Neuron, 93, 259–280. doi: 10.1016/j.neuron.2016.12.013 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Wessel, J. R., Jenkinson, N., Brittain, J.-S., Voets, S. H. E. M., Aziz, T. Z., & Aron, A. R. (2016). Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism. Nature Communications, 7, 11195. doi: 10.1038/ncomms11195 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Yoon, J. H., Curtis, C. E., & D’Esposito, M. (2006). Differential effects of distraction during working memory on delay-period activity in the prefrontal cortex and the visual association cortex. NeuroImage, 29, 1117–1126. doi: 10.1016/j.neuroimage.2005.08.024 CrossRefPubMedGoogle Scholar
  35. Zanto, T. P., & Gazzaley, A. (2009). Neural suppression of irrelevant information underlies optimal working memory performance. Journal of Neuroscience, 29, 3059–3066. doi: 10.1523/JNEUROSCI.4621-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233–235. doi: 10.1038/nature06860 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Zhang, W., & Luck, S. J. (2011). The number and quality of representations in working memory. Psychological Science, 22, 1434–1441. doi: 10.1177/0956797611417006 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • R. Dawn Finzi
    • 1
  • Bradley R. Postle
    • 2
  • Timothy F. Brady
    • 1
  • Adam R. Aron
    • 1
  1. 1.Psychology DepartmentUniversity of California, San DiegoLa JollaUSA
  2. 2.Psychology DepartmentUniversity of Wisconsin–MadisonMadisonUSA

Personalised recommendations