Sociomotor action control

Theoretical Review

Abstract

Our actions affect the behavior of other people in predictable ways. In the present article, we describe a theoretical framework for action control in social contexts that we call sociomotor action control. This framework addresses how human agents plan and initiate movements that trigger responses from other people, and we propose that humans represent and control such actions literally in terms of the body movements they consistently evoke from observers. We review evidence for this approach and discuss commonalities and differences to related fields such as joint action, intention understanding, imitation, and interpersonal power. The sociomotor framework highlights a range of open questions pertaining to how representations of other persons’ actions are linked to one’s own motor activity, how specifically they contribute to action initiation, and how they affect the way we perceive the actions of others.

Keywords

Social action Motor control Action effects Action representation 

Notes

Acknowledgments

Part of this research was funded by the DFG KU 1964, 14-1 and PF 853, 2-1

References

  1. Abernethy, B., & Zawi, K. (2007). Pickup of essential kinematics underpins expert perception of movement patterns. Journal of Motor Behavior, 39(5), 353–367.PubMedCrossRefGoogle Scholar
  2. Ansorge, U. (2002). Spatial intention–response compatibility. Acta Psychologica, 109(3), 285–299.PubMedCrossRefGoogle Scholar
  3. Ansuini, C., Cavallo, A., Bertone, C., & Becchio, C. (2015). Intentions in the brain: The unveiling of Mister Hyde. The Neuroscientist, 21(2), 126–135.PubMedCrossRefGoogle Scholar
  4. Baess, P., Widmann, A., Roye, A., Schröger, E., & Jacobsen, T. (2009). Attenuated human auditory middle latency response and evoked 40‐Hz response to self‐initiated sounds. European Journal of Neuroscience, 29(7), 1514–1521.PubMedCrossRefGoogle Scholar
  5. Bayliss, A. P., Murphy, E., Naughtin, C. K., Kritikos, A., Schilbach, L., & Becker, S. I. (2013). ‘Gaze leading’: Initiating simulated joint attention influences eye movements and choice behavior. Journal of Experimental Psychology: General, 142(1), 76–92.CrossRefGoogle Scholar
  6. Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106(1), 3–22.Google Scholar
  7. Becchio, C., Manera, V., Sartori, L., Cavallo, A., & Castiello, U. (2012). Grasping intentions: From thought experiments to empirical evidence. Frontiers in Human Neuroscience, 6, 117.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Becchio, C., Sartori, L., Bulgheroni, M., & Castiello, U. (2008). Both your intention and mine are reflected in the kinematics of my reach to grasp movement. Cognition, 106(2), 894–912.PubMedCrossRefGoogle Scholar
  9. Becchio, C., Sartori, L., & Castiello, U. (2010). Toward you: The social side of actions. Current Directions in Psychological Science, 19(3), 183–188.CrossRefGoogle Scholar
  10. Bigelow, A. E. (1998). Infants’ sensitivity to familiar imperfect contingencies in social interaction. Infant Behavior & Development, 21(1), 149–162.CrossRefGoogle Scholar
  11. Blakemore, S. J., Winston, J., & Frith, U. (2004). Social cognitive neuroscience: Where are we heading? Trends in Cognitive Sciences, 8(5), 216–222.PubMedCrossRefGoogle Scholar
  12. Blakemore, S. J., Wolpert, D., & Frith, C. (2000). Why can’t you tickle yourself? Neuroreport, 11(11), R11–R16.PubMedCrossRefGoogle Scholar
  13. Breuer, T., Giorgana Macedo, G. R., Hartanto, R., Hochgeschwender, N., Holz, D., Hegger, F., & Kraetzschmar, G. K. (2012). Johnny: An autonomous service robot for domestic environments. Journal of Intelligent and Robotic Systems, 66, 245–272.CrossRefGoogle Scholar
  14. Buehner, M. J., & Humphreys, G. R. (2009). Causal binding of actions to their effects. Psychological Science, 20(10), 1221–1228.PubMedCrossRefGoogle Scholar
  15. Bühler, K. (1934). Sprachtheorie. Jena, Germany: Gustav Fischer.Google Scholar
  16. Bunlon, F., Marshall, P. J., Quandt, L. C., & Bouquet, C. A. (2015). Influence of action-effect associations acquired by ideomotor learning on imitation. PLoS ONE, 10(3), e0121617.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Catmur, C., Walsh, V., & Heyes, C. (2007). Sensorimotor learning configures the human mirror system. Current Biology, 17(17), 1527–1531.PubMedCrossRefGoogle Scholar
  18. Chen, J., & Proctor, R. W. (2013). Response–effect compatibility defines the natural scrolling direction. Human Factors, 55(6), 1112–1129.PubMedCrossRefGoogle Scholar
  19. Cross, E. S., Ramsey, R., Liepelt, R., Prinz, W., & Hamilton, A. F. (2015). The shaping of social perception by stimulus and knowledge cues to human animacy. Philosophical Transactions of the Royal Society B. doi: 10.1098/rstb.2015.0075 Google Scholar
  20. Csibra, G., & Gergely, G. (2009). Natural pedagogy. Trends in Cognitive Sciences, 13(4), 148–153.PubMedCrossRefGoogle Scholar
  21. Dignath, D., Lotze-Hermes, P., Farmer, H., & Pfister, R. (2017). Contingency and contiguity of imitative behaviour affect social affiliation. Psychological Research. doi: 10.1007/s00426-017-0854-x Google Scholar
  22. Dignath, D., Pfister, R., Eder, A. B., Kiesel, A., & Kunde, W. (2014). Representing the hyphen in action–effect associations: Automatic acquisition and bidirectional retrieval of action–effect intervals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(6), 1701–1712.PubMedGoogle Scholar
  23. Dolk, T., Hommel, B., Colzato, L. S., Schütz-Bosbach, S., Prinz, W., & Liepelt, R. (2014). The joint Simon effect: A review and theoretical integration. Frontiers in Psychology, 5, 974.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Edwards, S. G., Stephenson, L. J., Dalmaso, M., & Bayliss, A. P. (2015). Social orienting in gaze leading: A mechanism for shared attention. Proceedings of the Royal Society B, 282(1812), 20151141. doi: 10.1098/rspb.2015.1141 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ekman, P., & Friesen, W. V. (1971). Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17(2), 124–129.PubMedCrossRefGoogle Scholar
  26. Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 229–240.PubMedGoogle Scholar
  27. Elsner, B., & Hommel, B. (2004). Contiguity and contingency in action-effect learning. Psychological Research, 68(2/3), 138–154.PubMedCrossRefGoogle Scholar
  28. Farah, M. J., Wilson, K. D., Drain, M., & Tanaka, J. N. (1998). What is” special” about face perception? Psychological Review, 105(3), 482–498.PubMedCrossRefGoogle Scholar
  29. Flach, R., Press, C., Badets, A., & Heyes, C. (2010). Shaking hands: Priming by social action effects. British Journal of Psychology, 101(4), 739–749.PubMedCrossRefGoogle Scholar
  30. Frischen, A., Bayliss, A. P., & Tipper, S. P. (2007). Gaze cueing of attention: Visual attention, social cognition, and individual differences. Psychological Bulletin, 133(4), 694–724.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Galinsky, A. D., Magee, J. C., Inesi, M. E., & Gruenfeld, D. H. (2006). Power and perspectives not taken. Psychological Science, 17(12), 1068–1074.PubMedCrossRefGoogle Scholar
  32. Gruenfeld, D. H., Inesi, M. E., Magee, J. C., & Galinsky, A. D. (2008). Power and the objectification of social targets. Journal of Personality and Social Psychology, 95(1), 111–127.PubMedCrossRefGoogle Scholar
  33. Haggard, P., Clark, S., & Kalogeras, J. (2002). Voluntary action and conscious awareness. Nature Neuroscience, 5(4), 382–385.PubMedCrossRefGoogle Scholar
  34. Harleß, E. (1861). Der Apparat des Willens [The apparatus of the will]. Zeitschrift für Philosophie und philosophische Kritik, 38, 50–73.Google Scholar
  35. Herbart, J. F. (1825). Psychologie als Wissenschaft, Zweiter analytischer 111Q712 Theil [Psychology as a Science. Second analytical part]. Werke, 6, 1–339.Google Scholar
  36. Herbort, O., Koning, A., van Uem, J., & Meulenbroek, R. G. (2012). The end-state comfort effect facilitates joint action. Acta Psychologica, 139(3), 404–416.PubMedCrossRefGoogle Scholar
  37. Herbort, O., & Kunde, W. (2016a). How to point and how to interpret pointing gestures? Instructions can reduce pointer-observer misunderstandings. Psychological Research. doi: 10.1007/s00426-016-0824-8 PubMedGoogle Scholar
  38. Herbort, O., & Kunde, W. (2016b). Spatial (mis-)interpretation of pointing gestures to distal referents. Journal of Experimental Psychology: Human Perception and Performance, 42(1), 78–89.PubMedGoogle Scholar
  39. Herwig, A., & Horstmann, G. (2011). Action–effect associations revealed by eye movements. Psychonomic Bulletin & Review, 18(3), 531–537.CrossRefGoogle Scholar
  40. Heyes, C. (2005). Imitation by association. In S. Hurley & N. Chater (Eds.), Perspectives on imitation: From neuroscience to social science (pp. 157–176). Cambridge, MA: MIT Press.Google Scholar
  41. Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463–483.PubMedCrossRefGoogle Scholar
  42. Hoffmann, J., Berner, M., Butz, M. V., Herbort, O., Kiesel, A., Kunde, W., & Lenhard, A. (2007). Explorations of anticipatory behavioral control (ABC): A report from the cognitive psychology unit of the University of Würzburg. Cognitive Processing, 8(2), 133–142.PubMedCrossRefGoogle Scholar
  43. Hoffmann, J., Lenhard, A., Sebald, A., & Pfister, R. (2009). Movements or targets: What makes an action in action–effect learning? The Quarterly Journal of Experimental Psychology, 62(12), 2433–2449.PubMedCrossRefGoogle Scholar
  44. Hommel, B. (2009). Action control according to TEC (theory of event coding). Psychological Research, 73(4), 512–526.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hommel, B., Alonso, D., & Fuentes, L. (2003). Acquisition and generalization of action effects. Visual Cognition, 10(8), 965–986.CrossRefGoogle Scholar
  46. Hommel, B., Colzato, L. S., & Van Den Wildenberg, W. P. (2009). How social are task representations? Psychological Science, 20(7), 794–798.PubMedCrossRefGoogle Scholar
  47. Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24(5), 849–878.PubMedCrossRefGoogle Scholar
  48. Hudson, M., Nicholson, T., Ellis, R., & Bach, P. (2016). I see what you say: Prior knowledge of other’s goals automatically biases the perception of their actions. Cognition, 146, 245–250.PubMedCrossRefGoogle Scholar
  49. Hudson, M., Nicholson, T., Simpson, W. A., Ellis, R., & Bach, P. (2016). One step ahead: The perceived kinematics of others’ actions are biased toward expected goals. Journal of Experimental Psychology: General, 145(1), 1–7.CrossRefGoogle Scholar
  50. James, W. (1890). The principles of psychology (Vol. 1). New York, NY: Holt.CrossRefGoogle Scholar
  51. Janczyk, M., & Kunde, W. (2014). The role of effect grouping in free-choice response selection. Acta Psychologica, 150, 49–54.PubMedCrossRefGoogle Scholar
  52. Janczyk, M., Pfister, R., Hommel, B., & Kunde, W. (2014). Who is talking in backward crosstalk? Disentangling response-from goal-conflict in dual-task performance. Cognition, 132(1), 30–43.PubMedCrossRefGoogle Scholar
  53. Janczyk, M., Skirde, S., Weigelt, M., & Kunde, W. (2009). Visual and tactile action effects determine bimanual coordination performance. Human Movement Science, 28(4), 437–449.PubMedCrossRefGoogle Scholar
  54. Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201–211.CrossRefGoogle Scholar
  55. Jones, S. S. (2007). Imitation in infancy the development of mimicry. Psychological Science, 18(7), 593–599.PubMedCrossRefGoogle Scholar
  56. Kanizsa, G. & Vicario, G. (1968). The perception of intentional reaction. In G. Kanizsa amp; G. Vicario (Eds.), Experimental research on perception (pp. 71–126). Trieste: University of Trieste.Google Scholar
  57. Keller, P. E., Dalla Bella, S., & Koch, I. (2010). Auditory imagery shapes movement timing and kinematics: Evidence from a musical task. Journal of Experimental Psychology: Human Perception and Performance, 36(2), 508.PubMedGoogle Scholar
  58. Keller, P. E., & Koch, I. (2008). Action planning in sequential skills: Relations to music performance. The Quarterly Journal of Experimental Psychology, 61(2), 275–291.PubMedCrossRefGoogle Scholar
  59. Kirsch, W., Pfister, R., & Kunde, W. (2016). Spatial action-effect binding. Attention, Perception, & Psychophysics, 78(1), 133–142.CrossRefGoogle Scholar
  60. Klapper, A., Ramsey, R., Wigboldus, D., ∓ Cross, E. S. (2014). The control of automatic imitation based on Bottom–Up and Top–Down cues to animacy: Insights from brain and behavior. Journal of Cognitive Neuroscience, 26(11), 2503–2513.Google Scholar
  61. Knoblich, G. Butterfill, S. & Sebanz, N. Psychological research on joint action: Theory and data. In B. Ross (Ed.), The Psychology of learning and motivation (vol. 54, pp. 59–101). Burlington: Academic Press.Google Scholar
  62. Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: Cognitive basis for stimulus-response compatibility–A model and taxonomy. Psychological Review, 97(2), 253.PubMedCrossRefGoogle Scholar
  63. Kunde, W. (2001). Response-effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27(2), 387.PubMedGoogle Scholar
  64. Kunde, W., Elsner, K., & Kiesel, A. (2007). No anticipation–no action: The role of anticipation in action and perception. Cognitive Processing, 8(2), 71–78.PubMedCrossRefGoogle Scholar
  65. Kunde, W., Hoffmann, J., & Zellmann, P. (2002). The impact of anticipated action effects on action planning. Acta Psychologica, 109(2), 137–155.PubMedCrossRefGoogle Scholar
  66. Kunde, W., Lozo, L., & Neumann, R. (2011). Effect-based control of facial expressions: Evidence from action–effect compatibility. Psychonomic Bulletin & Review, 18(4), 820–826.CrossRefGoogle Scholar
  67. Kunde, W., Pfister, R., & Janczyk, M. (2012). The locus of tool-transformation costs. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 703–714.PubMedGoogle Scholar
  68. Kunde, W., Skirde, S., & Weigelt, M. (2011). Trust my face: Cognitive factors of head fakes in sports. Journal of Experimental Psychology: Applied, 17(2), 110–127.PubMedGoogle Scholar
  69. Kunde, W., & Weigelt, M. (2005). Goal congruency in bimanual object manipulation. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 145–156.PubMedGoogle Scholar
  70. Kunde, W., & Wühr, P. (2004). Actions blind to conceptually overlapping stimuli. Psychological Research, 68(4), 199–207.PubMedCrossRefGoogle Scholar
  71. Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The law relating the kinematic and figural aspects of drawing movements. Acta Psychologica, 54, 115–130.PubMedCrossRefGoogle Scholar
  72. Lammers, J., Galinsky, A. D., Gordijn, E. H., & Otten, S. (2012). Power increases social distance. Social Psychological and Personality Science, 3(3), 282–290.Google Scholar
  73. Lelonkiewicz, J. R., & Gambi, C. (2016). Spontaneous adaptation explains why people act faster when being imitated. Psychonomic Bulletin & Review. doi: 10.3758/s13423-016-1141-3 Google Scholar
  74. Manera, V., Becchio, C., Schouten, B., Bara, B. G., & Verfaillie, K. (2011). Communicative interactions improve visual detection of biological motion. PLoS One, 6(1), e14594.Google Scholar
  75. Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 75–78.Google Scholar
  76. Memelink, J., & Hommel, B. (2013). Intentional weighting: A basic principle in cognitive control. Psychological Research, 77(3), 249–259.PubMedCrossRefGoogle Scholar
  77. Moore, J. W., & Obhi, S. S. (2012). Intentional binding and the sense of agency: A review. Consciousness and Cognition, 21(1), 546–561.PubMedCrossRefGoogle Scholar
  78. Müller, R. (2016). Does the anticipation of compatible partner reactions facilitate action planning in joint tasks? Psychological Research, 80(4), 464–486.PubMedCrossRefGoogle Scholar
  79. Müsseler, J., & Hommel, B. (1997). Blindness to response-compatible stimuli. Journal of Experimental Psychology: Human Perception and Performance, 23(3), 861–872.PubMedGoogle Scholar
  80. Müsseler, J., Kunde, W., Gausepohl, D., & Heuer, H. (2008). Does a tool eliminate spatial compatibility effects? European Journal of Cognitive Psychology, 20(2), 211–231.CrossRefGoogle Scholar
  81. Müsseler, J., Wühr, P., Danielmeier, C., & Zysset, S. (2005). Action-induced blindness with lateralized stimuli and responses. Experimental Brain Research, 160(2), 214–222.PubMedCrossRefGoogle Scholar
  82. Nagy, E. (2006). From imitation to conversation: The first dialogues with human neonates. Infant and Child Development, 15(3), 223–232.CrossRefGoogle Scholar
  83. Nagy, E., & Molnar, P. (2004). Homo imitans or homo provocans? Human imprinting model of neonatal imitation. Infant Behavior & Development, 27(1), 54–63.CrossRefGoogle Scholar
  84. Neumann, R., Lozo, L., & Kunde, W. (2014). Not all behaviors are controlled in the same way: Different mechanisms underlie manual and facial approach and avoidance responses. Journal of Experimental Psychology: General, 143(1), 1–8.CrossRefGoogle Scholar
  85. Nowak, K. L., & Biocca, F. (2003). The effect of the agency and anthropomorphism on users’ sense of telepresence, copresence, and social presence in virtual environments. Presence, 12(5), 481–494.CrossRefGoogle Scholar
  86. Paelecke, M., & Kunde, W. (2007). Action-effect codes in and before the central bottleneck: Evidence from the PRP paradigm. Journal of Experimental Psychology: Human Perception and Performance, 33, 627–644.PubMedGoogle Scholar
  87. Paulus, M. (2014). How and why do infants imitate? An ideomotor approach to social and imitative learning in infancy (and beyond). Psychonomic Bulletin & Review, 21(5), 1139–1156.CrossRefGoogle Scholar
  88. Paulus, M., Hunnius, S., Vissers, M., & Bekkering, H. (2011). Bridging the gap between the other and me: The functional role of motor resonance and action effects in infants’ imitation. Developmental Science, 14(4), 901–910.PubMedCrossRefGoogle Scholar
  89. Paulus, M., Hunnius, S., & Bekkering, H. (2013). Neurocognitive mechanisms underlying social learning in infancy: Infants’ neural processing of the effects of others’ actions. Social Cognitive and Affective Neuroscience, 8(7), 774–779.PubMedCrossRefGoogle Scholar
  90. Pavlova, M. A. (2012). Biological motion processing as a hallmark of social cognition. Cerebral Cortex, 22(5), 981–995.PubMedCrossRefGoogle Scholar
  91. Pfeiffer, U. J., Timmermans, B., Bente, G., Vogeley, K., & Schilbach, L. (2011). A non-verbal turing test: differentiating mind from machine in gaze-based social interaction. PloS one, 6(11), e27591.Google Scholar
  92. Pfister, R., Dignath, D., Hommel, B., & Kunde, W. (2013). It takes two to imitate anticipation and imitation in social interaction. Psychological Science, 24(10), 2117–2121.PubMedCrossRefGoogle Scholar
  93. Pfister, R., Heinemann, A., Kiesel, A., Thomaschke, R., & Janczyk, M. (2012). Do endogenous and exogenous action control compete for perception? Journal of Experimental Psychology: Human Perception and Performance, 38(2), 279–284.PubMedGoogle Scholar
  94. Pfister, R., & Janczyk, M. (2012). Harleß’ apparatus of will: 150 years later. Psychological Research, 76(5), 561–565.PubMedCrossRefGoogle Scholar
  95. Pfister, R., Janczyk, M., Gressmann, M., Fournier, L. R., & Kunde, W. (2014). Good vibrations? Vibrotactile self-stimulation reveals anticipation of body-related action effects in motor control. Experimental Brain Research, 232(3), 847–854.PubMedCrossRefGoogle Scholar
  96. Pfister, R., Janczyk, M., Wirth, R., Dignath, D., & Kunde, W. (2014). Thinking with portals: Revisiting kinematic cues to intention. Cognition, 133(2), 464–473.PubMedCrossRefGoogle Scholar
  97. Pfister, R., Kiesel, A., & Hoffmann, J. (2011). Learning at any rate: Action–effect learning for stimulus-based actions. Psychological Research, 75(1), 61–65.PubMedCrossRefGoogle Scholar
  98. Pfister, R., & Kunde, W. (2013). Dissecting the response in response–effect compatibility. Experimental Brain Research, 224(4), 647–655.PubMedCrossRefGoogle Scholar
  99. Pfister, R., Obhi, S., Rieger, M., & Wenke, D. (2014). Action and perception in social contexts: Intentional binding for social action effects. Frontiers in Human Neuroscience, 8, 667.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pfister, R., Pfeuffer, C. U., & Kunde, W. (2014). Perceiving by proxy: Effect-based action control with unperceivable effects. Cognition, 132(3), 251–261.PubMedCrossRefGoogle Scholar
  101. Pfister, R., Weller, L., Dignath, D., & Kunde, W. (2017). What or when? The impact of anticipated social action effects is driven by action-effect compatibility, not delay. Manuscript submitted for publication.Google Scholar
  102. Poeppel, D., & Monahan, P. J. (2008). Speech perception. Cognitive foundations and cortical implementation. Current Directions in Psychological Science, 17(2), 80–85.CrossRefGoogle Scholar
  103. Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129–154.CrossRefGoogle Scholar
  104. Rieger, M. (2007). Letters as visual action-effects in skilled typing. Acta Psychologica, 126(2), 138–153.PubMedCrossRefGoogle Scholar
  105. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRefGoogle Scholar
  106. Sartori, L., Becchio, C., & Castiello, U. (2011). Cues to intention: The role of movement information. Cognition, 119(2), 242–252.PubMedCrossRefGoogle Scholar
  107. Sato, A., & Itakura, S. (2013). Intersubjective action-effect binding: Eye contact modulates acquisition of bidirectional association between our and others’ actions. Cognition, 127(3), 383–390.PubMedCrossRefGoogle Scholar
  108. Schilbach, L. (2014). On the relationship of online and offline social cognition. Frontiers in Human Neuroscience, 8, 278.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Schlottmann, A., Ray, E. D., Mitchell, A., & Demetriou, N. (2006). Perceived physical and social causality in animated motions: Spontaneous reports and ratings. Acta Psychologica, 123(1), 112–143.PubMedCrossRefGoogle Scholar
  110. Scholl, B. J., & Tremoulet, P. D. (2000). Perceptual causality and animacy. Trends in Cognitive Sciences, 4(8), 299–309.PubMedCrossRefGoogle Scholar
  111. Sciutti, A., Ansuini, C., Becchio, C., & Sandini, G. (2015) Investigating the ability to read others’ intentions using humanoid robots. Frontiers in Psychology, 6(1362). doi: 10.3389/fpsyg.2015.01362
  112. Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10(2), 70–76.PubMedCrossRefGoogle Scholar
  113. Sebanz, N., Knoblich, G., & Prinz, W. (2003). Representing others’ actions: Just like one’s own? Cognition, 88(3), B11–B21.PubMedCrossRefGoogle Scholar
  114. Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: The role of expertise. Psychonomic Bulletin and Review, 16(1), 170–175.PubMedCrossRefGoogle Scholar
  115. Shergill, S. S., Bays, P. M., Frith, C. D., & Wolpert, D. M. (2003). Two eyes for an eye: The neuroscience of force escalation. Science, 301(5630), 187.PubMedCrossRefGoogle Scholar
  116. Shiffrar, M., & Freyd, J. J. (1990). Apparent motion of the human body. Psychological Science, 1(4), 257–264.CrossRefGoogle Scholar
  117. Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136(6), 943–974.PubMedCrossRefGoogle Scholar
  118. Stenzel, A., Chinellato, E., Bou, M. A. T., del Pobil, Á. P., Lappe, M., & Liepelt, R. (2012). When humanoid robots become human-like interaction partners: Corepresentation of robotic actions. Journal of Experimental Psychology: Human Perception and Performance, 38(5), 1073–1077.PubMedGoogle Scholar
  119. Stock, A., & Stock, C. (2004). A short history of ideo-motor action. Psychological Research, 68(2/3), 176–188.PubMedCrossRefGoogle Scholar
  120. Stolk, A., Verhagen, L., & Toni, I. (2016). Conceptual alignment: How brains achieve mutual understanding. Trends in Cognitive Sciences, 20(3), 180–191.PubMedCrossRefGoogle Scholar
  121. Striano, T., Henning, A., & Stahl, D. (2005). Sensitivity to social contingencies between 1 and 3 months of age. Developmental Science, 8(6), 509–518.PubMedCrossRefGoogle Scholar
  122. Thompson, J. C., Clarke, M., Stewart, T., & Puce, A. (2005). Configural processing of biological motion in human superior temporal sulcus. The Journal of Neuroscience, 25(39), 9059–9066.PubMedCrossRefGoogle Scholar
  123. Tomasello, M. (1998). Emulation learning and cultural learning. Behavioral and Brain Sciences, 21, 703–704.CrossRefGoogle Scholar
  124. Vesper, C., Butterfill, S., Knoblich, G., & Sebanz, N. (2010). A minimal architecture for joint action. Neural Networks, 23(8), 998–1003.PubMedCrossRefGoogle Scholar
  125. Vesper, C., Schmitz, L., Safra, L., Sebanz, N., & Knoblich, G. (2016). The role of shared visual information for joint action coordination. Cognition, 153, 118–123.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Want, S. C., & Harris, P. L. (2002). How do children ape? Applying concepts from the study of non-human primates to the developmental study of ‘imitation’ in children. Developmental Science, 2, 1–41.CrossRefGoogle Scholar
  127. Watson, J. S. (1997). Contingency and its two indices within conditional probability analysis. Behavior Analyst, 20(2), 129.PubMedPubMedCentralGoogle Scholar
  128. Weiskrantz, L., Elliott, J., & Darlington, C. (1971). Preliminary observations on tickling oneself. Nature, 230, 598–599.PubMedCrossRefGoogle Scholar
  129. Weiss, C., Herwig, A., & Schütz-Bosbach, S. (2011). The self in action effects: Selective attenuation of self-generated sounds. Cognition, 121(2), 207–218.PubMedCrossRefGoogle Scholar
  130. Wenke, D., Atmaca, S., Holländer, A., Liepelt, R., Baess, P., & Prinz, W. (2011). What is shared in joint action? Issues of co-representation, response conflict, and agent identification. Review of Philosophy and Psychology, 2(2), 147–172.CrossRefGoogle Scholar
  131. Wiggett, A. J., Hudson, M., Tipper, S. P., & Downing, P. E. (2011). Learning associations between action and perception: Effects of incompatible training on body part and spatial priming. Brain and Cognition, 76(1), 87–96.PubMedCrossRefGoogle Scholar
  132. Wolfensteller, U., & Ruge, H. (2011). On the timescale of stimulus-based action–effect learning. The Quarterly Journal of Experimental Psychology, 64(7), 1273–1289.PubMedCrossRefGoogle Scholar
  133. Wolfensteller, U., & Ruge, H. (2014). Response selection difficulty modulates the behavioral impact of rapidly learnt action effects. Frontiers in Psychology, 5, 1382.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1431), 593–602.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Department of PsychologyJulius-Maximilians-Universität WürzburgWürzburgGermany

Personalised recommendations