Forgetting from lapses of sustained attention

  • Megan T. deBettencourt
  • Kenneth A. Norman
  • Nicholas B. Turk-Browne
Brief Report

Abstract

When performing any task for an extended period of time, attention fluctuates between good and bad states. These fluctuations affect performance in the moment, but may also have lasting consequences for what gets encoded into memory. Experiment 1 establishes this relationship between attentional states and memory, by showing that subsequent memory for an item was predicted by a response time index of sustained attention (average response time during the three trials prior to stimulus onset). Experiment 2 strengthens the causal interpretation of this predictive relationship by treating the sustained attention index as an independent variable to trigger the appearance of an encoding trial. Subsequent memory was better when items were triggered from good versus bad attentional states. Together, these findings suggest that sustained attention can have downstream consequences for what we remember, and they highlight the inferential utility of adaptive experimental designs. By continuously monitoring attention, we can influence what will later be remembered.

Keywords

Goal-directed attention Distraction Episodic memory Real time 

Supplementary material

13423_2017_1309_MOESM1_ESM.pdf (309 kb)
Supplemental Figure 1The development and endurance of attentional lapses. a At various window sizes, the average RT before a correct response was slower than before an incorrect response. ΔRT indicates the RT difference, correct minus incorrect. b The slope of the logistic function, β, was reliably positive for each window size. A positive slope indicates that slower RTs led to greater probability that an infrequent trial would be later remembered. c At each lag (window size = 1), the RT before a correct response was slower than before an incorrect response. d The slope of the logistic function was positive for each lag, though only reliably so for lag –1. Individual participants are depicted in gray circles. The average is the solid black circle and the error bars depict 95% CIs. ***p < 0.001, *p < 0.05, ~p < 0.1 (PDF 308 kb)

References

  1. Aly, M., & Turk-Browne, N. B. (2017). How hippocampal memory shapes, and is shaped by, attention. In D. E. Hannula & M. C. Duff (Eds.), The Hippocampus from cells to systems: Structure, connectivity, and functional contributions to memory and flexible cognition (pp. 369–403). Switzerland: Springer International Publishing AG.Google Scholar
  2. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.CrossRefPubMedGoogle Scholar
  3. Chiu, Y.-C., & Egner, T. (2015a). Inhibition-induced forgetting results from resource competition between response inhibition and memory encoding processes. The Journal of Neuroscience, 35(34), 11936–11945.CrossRefPubMedGoogle Scholar
  4. Chiu, Y.-C., & Egner, T. (2015b). Inhibition-induced forgetting when more control leads to less memory. Psychological Science, 26(1), 27–38.CrossRefPubMedGoogle Scholar
  5. Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62(1), 73–101.CrossRefPubMedGoogle Scholar
  6. Craik, F. I. M. (2001). Effects of dividing attention on encoding and retrieval processes. In H. L. Roediger, J. S. Nairne, I. Neath, & A. M. Surprenant (Eds.), The nature of remembering: Essays in honor of Robert G. Crowder (pp. 55–68). Washington, DC, US: American Psychological Association.CrossRefGoogle Scholar
  7. deBettencourt, M. T., Cohen, J. D., Lee, R. F., Norman, K. A., & Turk-Browne, N. B. (2015). Closed-loop training of attention with real-time brain imaging. Nature Neuroscience, 18(3), 470–475.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Duncan, K., Sadanand, A., & Davachi, L. (2012). Memory’s Penumbra: Episodic memory decisions induce lingering mnemonic biases. Science, 337(6093), 485–487.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1), 54–75.CrossRefGoogle Scholar
  10. Esterman, M., Noonan, S. K., Rosenberg, M., & DeGutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23(11), 2712–2723.CrossRefPubMedGoogle Scholar
  11. Esterman, M., Rosenberg, M. D., & Noonan, S. K. (2014). Intrinsic fluctuations in sustained attention and distractor processing. The Journal of Neuroscience, 34(5), 1724–1730.CrossRefPubMedGoogle Scholar
  12. Fleck, M. S., & Mitroff, S. R. (2007). Rare targets are rarely missed in correctable search. Psychological Science, 18(11), 943–947.CrossRefPubMedGoogle Scholar
  13. Kim, G., Lewis-Peacock, J. A., Norman, K. A., & Turk-Browne, N. B. (2014). Pruning of memories by context-based prediction error. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8997–9002.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Leber, A. B. (2010). Neural predictors of within-subject fluctuations in attentional control. The Journal of Neuroscience, 30(34), 11458–11465.CrossRefPubMedGoogle Scholar
  15. Leber, A. B., Turk-Browne, N. B., & Chun, M. M. (2008). Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proceedings of the National Academy of Sciences of the United States of America, 105(36), 13592–13597.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Makovski, T., Jiang, Y. V., & Swallow, K. M. (2013). How do observer’s responses affect visual long-term memory? Journal of Experimental Psychology. Learning, Memory, and Cognition, 39(4), 1097–1105.CrossRefPubMedGoogle Scholar
  17. Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology, 11(1), 56–60.CrossRefGoogle Scholar
  18. Otten, L. J., Quayle, A. H., Akram, S., Ditewig, T. A., & Rugg, M. D. (2006). Brain activity before an event predicts later recollection. Nature Neuroscience, 9(4), 489–491.CrossRefPubMedGoogle Scholar
  19. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.CrossRefPubMedGoogle Scholar
  20. Robertson, I. H., Manly, T., Andrade, J., Baddeley, B. T., & Yiend, J. (1997). ‘Oops!’: Performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia, 35(6), 747–758.CrossRefPubMedGoogle Scholar
  21. Rosenberg, M., Noonan, S., DeGutis, J., & Esterman, M. (2013). Sustaining visual attention in the face of distraction: A novel gradual-onset continuous performance task. Attention, Perception, & Psychophysics, 75(3), 426–439.CrossRefGoogle Scholar
  22. Salari, N., Büchel, C., & Rose, M. (2012). Functional dissociation of ongoing oscillatory brain states. PloS One, 7(5), e38090.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Salari, N., & Rose, M. (2016). Dissociation of the functional relevance of different pre-stimulus oscillatory activity for memory formation. NeuroImage, 125, 1013–1021.CrossRefPubMedGoogle Scholar
  24. Stoeckel, L. E., Garrison, K. A., Ghosh, S., Wighton, P., Hanlon, C. A., Gilman, J. M., … Evins, A. E. (2014). Optimizing real time fMRI neurofeedback for therapeutic discovery and development. NeuroImage. Clinical, 5, 245–255.Google Scholar
  25. Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N., Blefari, M. L., … Sitaram, R. (2013). Real-time fMRI neurofeedback: Progress and challenges. NeuroImage, 76, 386–399.Google Scholar
  26. Turk-Browne, N. B., Golomb, J. D., & Chun, M. M. (2013). Complementary attentional components of successful memory encoding. NeuroImage, 66, 553–562.CrossRefPubMedGoogle Scholar
  27. Uncapher, M. R., Hutchinson, J. B., & Wagner, A. D. (2011). Dissociable effects of top-down and bottom-up attention during episodic encoding. The Journal of Neuroscience, 31(35), 12613–12628.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., … Buckner, R. L. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281(5380), 1188–1191.Google Scholar
  29. Wolfe, J. M., Horowitz, T. S., & Kenner, N. M. (2005). Cognitive psychology: Rare items often missed in visual searches. Nature, 435(7041), 439–440.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010). SUN database: Large-scale scene recognition from abbey to zoo. In 2010 I.E.E.E. Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3485–3492).Google Scholar
  31. Yi, D.-J., & Chun, M. M. (2005). Attentional modulation of learning-related repetition attenuation effects in human parahippocampal cortex. The Journal of Neuroscience, 25(14), 3593–3600.CrossRefPubMedGoogle Scholar
  32. Yoo, J. J., Hinds, O., Ofen, N., Thompson, T. W., Whitfield-Gabrieli, S., Triantafyllou, C., & Gabrieli, J. D. E. (2012). When the brain is prepared to learn: Enhancing human learning using real-time fMRI. NeuroImage, 59(1), 846–852.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Megan T. deBettencourt
    • 1
    • 2
    • 3
  • Kenneth A. Norman
    • 1
    • 4
  • Nicholas B. Turk-Browne
    • 1
    • 4
  1. 1.Princeton Neuroscience InstitutePrinceton UniversityPrincetonUSA
  2. 2.Institute for Mind and BiologyUniversity of ChicagoChicagoUSA
  3. 3.Department of PsychologyUniversity of ChicagoChicagoUSA
  4. 4.Department of PsychologyPrinceton UniversityPrincetonUSA

Personalised recommendations