Psychonomic Bulletin & Review

, Volume 25, Issue 1, pp 350–369 | Cite as

The human newborn’s umwelt: Unexplored pathways and perspectives

  • Vanessa André
  • Séverine Henry
  • Alban Lemasson
  • Martine Hausberger
  • Virginie Durier
Theoretical Review


Historically, newborns, and especially premature newborns, were thought to “feel nothing.” However, over the past decades, a growing body of evidence has shown that newborns are aware of their environment, but the extent and the onset of some sensory capacities remain largely unknown. The goal of this review is to update our current knowledge concerning newborns’ perceptual world and how ready they are to cope with an entirely different sensory environment following birth. We aim to establish not only how and when each sensory ability arises during the pre-/postbirth period but also discuss how senses are studied. We conclude that although many studies converge to show that newborns are clearly sentient beings, much is still unknown. Further, we identify a series of internal and external factors that could explain discrepancies between studies, and we propose perspectives for future studies. Finally, through examples from animal studies, we illustrate the importance of this detailed knowledge to pursue the enhancement of newborns’ daily living conditions. Indeed, this is a prerequisite for assessing the effects of the physical environment and routine procedures on newborns’ welfare.


Fetus Newborn Reaction Sensory perception 


Author note

The idea of this review emerged from scientific discussions among members of an interdisciplinary research project (Groupement d’Intérêt Scientifique “Cerveau-Comportement-Société”/Scientific Interest Group “Brain-Behavior-Society”). This study received financial support from the French Ministry of Research and the CNRS. We thank Jacques Sizun and Alain Beuchée for their medical contribution and Marianne Barbu-Roth for her bibliography input. We are very grateful to Ann Cloarec and Jodi Pawluski for checking and correcting the English.


  1. Abramov, I., Gordon, J., Hendrickson, A., Hainline, L., Dobson, V., & LaBossiere, E. (1982). The retina of the newborn human infant. Science, 217(4556), 265–267. doi: 10.1126/science.6178160 PubMedCrossRefGoogle Scholar
  2. Adams, R. J., Courage, M. L., & Mercer, M. E. (1991). Deficiencies in human neonates’ color vision: Photoreceptoral and neural explanations. Behavioural Brain Research, 43(2), 109–114. doi: 10.1016/S0166-4328(05)80060-9 PubMedCrossRefGoogle Scholar
  3. Adams, R. J., Courage, M. L., & Mercer, M. E. (1994). Systematic measurement of human neonatal color vision. Vision Research, 34(13), 1691–1701. doi: 10.1016/0042-6989(94)90127-9 PubMedCrossRefGoogle Scholar
  4. Adams, R. J., Maurer, D., & Cashin, H. A. (1990). The influence of stimulus size on newborns’ discrimination of chromatic from achromatic stimuli. Vision Research, 30(12), 2023–2030. doi: 10.1016/0042-6989(90)90018-G PubMedCrossRefGoogle Scholar
  5. Adams, R. J., Maurer, D., & Davis, M. (1986). Newborns’ discrimination of chromatic from achromatic stimuli. Journal of Experimental Child Psychology, 41(2), 267–281. doi: 10.1016/0022-0965(86)90040-8 PubMedCrossRefGoogle Scholar
  6. Aladjem, S., Feria, A., Rest, J., & Stojanovic, J. (1977). Fetal heart rate responses to fetal movements. BJOG: An International Journal of Obstetrics & Gynaecology, 84(7), 487–491. doi: 10.1111/j.1471-0528.1977.tb12630.x CrossRefGoogle Scholar
  7. Alberts, J. R. (2008). The nature of nurturant niches in ontogeny. Philosophical Psychology, 21(3), 295–303. doi: 10.1080/09515080802169814 CrossRefGoogle Scholar
  8. Alberts, J. R., & Cramer, C. P. (1988). Ecology and experience. In E. M. Blass (Ed.), Developmental psychobiology and behavioral ecology (pp. 1–39). Boston, MA: Springer US.Google Scholar
  9. Alberts, J. R., & Harshaw, C. (2014). Behavioral development and ontogenetic adaptation. In K. Yasukawa & Z. Tang-Martinez (Eds.), Animal behavior: How and why animals do the things they do (Vol. 1, pp. 289–324). Santa Barbara, CA: Praeger.Google Scholar
  10. Alberts, J. R., & Ronca, A. E. (1993). Fetal experience revealed by rats: Psychobiological insights. Early Human Development, 35(3), 153–166. doi: 10.1016/0378-3782(93)90102-Z PubMedCrossRefGoogle Scholar
  11. Allen, M. C., & Capute, A. J. (1986). Assessment of early auditory and visual abilities of extremely premature infants. Developmental Medicine & Child Neurology, 28(4), 458–466. doi: 10.1111/j.1469-8749.1986.tb14283.x CrossRefGoogle Scholar
  12. Als, H., Duffy, F. H., McAnulty, G. B., Rivkin, M. J., Vajapeyam, S., Mulkern, R. V., … Eichenwald, E. C. (2004). Early experience alters brain function and structure. Pediatrics, 113(4), 846–857.Google Scholar
  13. Als, H., Gilkerson, L., Duffy, F. H., Mcanulty, G. B., Buehler, D. M., Vandenberg, K., … Jones, K. J. (2003). A three-center, randomized, controlled trial of individualized developmental care for very low birth weight preterm infants: Medical, neurodevelopmental, parenting, and caregiving effects. Journal of Developmental & Behavioral Pediatrics, 24(6), 399–408.Google Scholar
  14. Anand, K. J., & Hickey, P. R. (1987). Pain and its effects in the human neonate and fetus. New England Journal of Medicine, 317(21), 1321–1329. doi: 10.1056/NEJM198711193172105 PubMedCrossRefGoogle Scholar
  15. Ando, Y., & Hattori, H. (1970). Effects of intense noise during fetal life upon postnatal adaptability (Statistical study of the reactions of babies to aircraft noise). The Journal of the Acoustical Society of America, 47(4B), 1128–1130. doi: 10.1121/1.1912014 PubMedCrossRefGoogle Scholar
  16. Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in neonates. Child Development, 54(3), 695–701. doi: 10.2307/1130057 PubMedCrossRefGoogle Scholar
  17. Arabin, B., Geinbruch, U., & von Eyck, J. (1993). Registration of fetal behaviour in multiple pregnancy. Journal of Perinatal Medicine, 21(4), 285–294. doi: 10.1515/jpme.1993.21.4.285 PubMedCrossRefGoogle Scholar
  18. Aslin, R. N. (2007). What’s in a look? Developmental Science, 10(1), 48–53. doi: 10.1111/j.1467-7687.2007.00563.x PubMedPubMedCentralCrossRefGoogle Scholar
  19. Badalian, S. S., Chao, C. R., Fox, H. E., & Timor-Tritsch, I. E. (1993). Fetal breathing—Related nasal fluid flow velocity in uncomplicated pregnancies. American Journal of Obstetrics and Gynecology, 169(3), 563–567. doi: 10.1016/0002-9378(93)90621-O PubMedCrossRefGoogle Scholar
  20. Ball, W., & Tronick, E. (1971). Infant responses to impending collision: Optical and real. Science, 171(3973), 818–820. doi: 10.1126/science.171.3973.818 PubMedCrossRefGoogle Scholar
  21. Barbu-Roth, M., Anderson, D. I., Desprès, A., Provasi, J., Cabrol, D., & Campos, J. J. (2009). Neonatal stepping in relation to terrestrial optic flow. Child Development, 80(1), 8–14. doi: 10.1111/j.1467-8624.2008.01241.x PubMedPubMedCentralCrossRefGoogle Scholar
  22. Barbu-Roth, M., Anderson, D. I., Desprès, A., Streeter, R. J., Cabrol, D., Trujillo, M., … Provasi, J. (2014). Air stepping in response to optic flows that move toward and away from the neonate. Developmental Psychobiology, 56(5), 1142–1149. doi: 10.1002/dev.21174
  23. Bardi, L., Regolin, L., & Simion, F. (2011). Biological motion preference in humans at birth: Role of dynamic and configural properties. Developmental Science, 14(2), 353–359. doi: 10.1111/j.1467-7687.2010.00985.x PubMedCrossRefGoogle Scholar
  24. Bartocci, M., Winberg, J., Papendieck, G., Mustica, T., Serra, G., & Lagercrantz, H. (2001). Cerebral hemodynamic response to unpleasant odors in the preterm newborn measured by near-infrared spectroscopy. Pediatric Research, 50(3), 324–330. doi: 10.1203/00006450-200109000-00006 PubMedCrossRefGoogle Scholar
  25. Bartocci, M., Winberg, J., Ruggiero, C., Bergqvist, L. L., Serra, G., & Lagercrantz, H. (2000). Activation of olfactory cortex in newborn infants after odor stimulation: A functional near-infrared spectroscopy study. Pediatric Research, 48(1), 18–23. doi: 10.1203/00006450-200007000-00006 PubMedCrossRefGoogle Scholar
  26. Bell, A. F., White-Traut, R., Wang, E. C., & Schwertz, D. (2012). Maternal and umbilical artery cortisol at birth: Relationships with epidural analgesia and newborn alertness. Biological Research for Nursing, 14(3). doi: 10.1177/1099800411413460
  27. Benzaquen, S., Gagnon, R., Hunse, C., & Foreman, J. (1990). The intrauterine sound environment of the human fetus during labor. American Journal of Obstetrics and Gynecology, 163(2), 484–490. doi: 10.1016/0002-9378(90)91180-K PubMedCrossRefGoogle Scholar
  28. Bertelle, V., Mabin, D., Adrien, J., & Sizun, J. (2005). Sleep of preterm neonates under developmental care or regular environmental conditions. Early Human Development, 81(7), 595–600. doi: 10.1016/j.earlhumdev.2005.01.008 PubMedCrossRefGoogle Scholar
  29. Bertoncini, J., Bijeljac-Babic, R., Blumstein, S. E., & Mehler, J. (1987). Discrimination in neonates of very short CVs. The Journal of the Acoustical Society of America, 82(1), 31–37. doi: 10.1121/1.395570 PubMedCrossRefGoogle Scholar
  30. Bertoncini, J., Morais, J., Bijeljac-Babic, R., McAdams, S., Peretz, I., & Mehler, J. (1989). Dichotic perception and laterality in neonates. Brain and Language, 37(4), 591–605. doi: 10.1016/0093-934X(89)90113-2 PubMedCrossRefGoogle Scholar
  31. Bidet-Ildei, C., Kitromilides, E., Orliaguet, J.-P., Pavlova, M., & Gentaz, E. (2014). Preference for point-light human biological motion in newborns: Contribution of translational displacement. Developmental Psychology, 50(1), 113–120. doi: 10.1037/a0032956 PubMedCrossRefGoogle Scholar
  32. Bijeljac-Babic, R., Bertoncini, J., & Mehler, J. (1993). How do 4-day-old infants categorize multisyllabic utterances? Developmental Psychology, 29(4), 711–721. doi: 10.1037/0012-1649.29.4.711 CrossRefGoogle Scholar
  33. Blackburn, S. (1998). Environmental impact of the NICU on developmental outcomes. Journal of Pediatric Nursing, 13(5), 279–289. doi: 10.1016/S0882-5963(98)80013-4 PubMedCrossRefGoogle Scholar
  34. Borges, S., & Berry, M. (1978). The effects of dark rearing on the development of the visual cortex of the rat. The Journal of Comparative Neurology, 180(2), 277–300. doi: 10.1002/cne.901800207 PubMedCrossRefGoogle Scholar
  35. Bossy, J. (1980). Development of olfactory and related structures in staged human embryos. Anatomy and Embryology, 161, 225–236. doi: 10.1007/BF00305346 PubMedCrossRefGoogle Scholar
  36. Bradfield, A. (1961). The Vagal Factor in Foetal Heart Rate Change I—The effect of abdominal pressure. Australian and New Zealand Journal of Obstetrics and Gynaecology, 1(3), 106–112. doi: 10.1111/j.1479-828X.1961.tb00089.x CrossRefGoogle Scholar
  37. Bradley, R. M., & Stern, I. B. (1967). The development of the human taste bud during the foetal period. Journal of Anatomy, 101(Pt. 4), 743–752.PubMedPubMedCentralGoogle Scholar
  38. Brown, J., Kaplan, G., Rogers, L. J., & Vallortigara, G. (2010). Perception of biological motion in common marmosets (Callithrix jacchus): By females only. Animal Cognition, 13(3), 555–564. doi: 10.1007/s10071-009-0306-0 PubMedCrossRefGoogle Scholar
  39. Brown, A. M., Lindsey, D. T., Cammenga, J. G., Giannone, P. J., & Stenger, M. R. (2015). The contrast sensitivity of the newborn human infant. Investigative Ophthalmology & Visual Science, 56, 625–632. doi: 10.1167/iovs.14-14757 CrossRefGoogle Scholar
  40. Browne, J. V. (2008). Chemosensory development in the fetus and newborn. Newborn and Infant Nursing Reviews, 8(4), 180–186. doi: 10.1053/j.nainr.2008.10.009 CrossRefGoogle Scholar
  41. Browne, J. V. (2011). Developmental Care for High-Risk Newborns: Emerging science, clinical application, and continuity from newborn intensive care unit to community. Clinics in Perinatology, 38(4), 719–729. doi: 10.1016/j.clp.2011.08.003 PubMedCrossRefGoogle Scholar
  42. Burkhalter, A., Bernardo, K. L., & Charles, V. (1993). Development of local circuits in human visual cortex. The Journal of Neuroscience, 13(5), 1916–1931.PubMedGoogle Scholar
  43. Bystrova, K., Widström, A. M., Matthiesen, A. S., Ransjö-Arvidson, A. B., Welles-Nyström, B., Wassberg, C., … Uvnäs-Moberg, K. (2003). Skin-to-skin contact may reduce negative consequences of “the stress of being born”: A study on temperature in newborn infants, subjected to different ward routines in St. Petersburg. Acta Pædiatrica, 92(3), 320–326. doi: 10.1111/j.1651-2227.2003.tb00553.x
  44. Carey, S., & Spelke, E. (1996). Science and core knowledge. Philosophy of Science, 63(4), 515–533. doi: 10.1086/289971 CrossRefGoogle Scholar
  45. Cassidy, J. W., & Ditty, K. M. (2001). Gender differences among newborns on a transient otoacoustic emissions test for hearing. Journal of Music Therapy, 38, 28–35. doi: 10.1093/jmt/38.1.28 PubMedCrossRefGoogle Scholar
  46. Cheour-Luhtanen, M., Alho, K., Sainio, K., Rinne, T., Reinikainen, K., Pohjavuori, M., … Näätänen, R. (1996). The ontogenetically earliest discriminative response of the human brain. Psychophysiology, 33(4), 478–481. doi: 10.1111/j.1469-8986.1996.tb01074.x
  47. Chin, K. C., Taylor, M. J., Menzies, R., & Whyte, H. (1985). Development of visual evoked potentials in neonates. A study using light emitting diode goggles. Archives of Disease in Childhood, 60, 1166–1168. doi: 10.1136/adc.60.12.1166 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Chuah, M. I., & Zheng, D. R. (1987). Olfactory marker protein is present in olfactory receptor cells of human fetuses. Neuroscience, 23(1), 363–370. doi: 10.1016/0306-4522(87)90296-X PubMedCrossRefGoogle Scholar
  49. Clairambault, J., Curzi-Dascalova, L., Kauffmann, F., Médigue, C., & Leffler, C. (1992). Heart rate variability in normal sleeping full-term and preterm neonates. Early Human Development, 28(2), 169–183. doi: 10.1016/0378-3782(92)90111-S PubMedCrossRefGoogle Scholar
  50. Coulon, M., Guellaï, B., & Streri, A. (2011). Recognition of unfamiliar talking faces at birth. International Journal of Behavioral Development. doi: 10.1177/0165025410396765 Google Scholar
  51. Coulon, M., Hemimou, C., & Streri, A. (2013). Effects of seeing and hearing vowels on neonatal facial imitation. Infancy, 18(5), 782–796. doi: 10.1111/infa.12001 CrossRefGoogle Scholar
  52. Craig, K. D. (1992). The facial expression of pain Better than a thousand words? APS Journal, 1, 153–162. doi: 10.1016/1058-9139(92)90001-S CrossRefGoogle Scholar
  53. Craig, K. D., Whitfield, M. F., Grunau, R. V. E., Linton, J., & Hadjistavropoulos, H. D. (1993). Pain in the preterm neonate: Behavioural and physiological indices. Pain, 52(3), 287–299. doi: 10.1016/0304-3959(93)90162-I PubMedCrossRefGoogle Scholar
  54. Crook, C. K. (1978). Taste perception in the newborn infant. Infant Behavior and Development, 1, 52–69. doi: 10.1016/S0163-6383(78)80009-5 CrossRefGoogle Scholar
  55. Curzi-Dascalova, L., Lebrun, F., & Korn, G. (1983). Respiratory frequency according to sleep states and age in normal premature infants: A comparison with full term infants. Pediatric Research, 17(2), 152–156. doi: 10.1203/00006450-198302000-00014 PubMedCrossRefGoogle Scholar
  56. Curzi-Dascalova, L., Peirano, P., & Morel-Kahn, F. (1988). Development of sleep states in normal premature and full-term newborns. Developmental Psychobiology, 21(5), 431–444. doi: 10.1002/dev.420210503 PubMedCrossRefGoogle Scholar
  57. Darcy, A. E., Hancock, L. E., & Ware, E. J. (2008). A descriptive study of noise in the neonatal intensive care unit ambient levels and perceptions of contributing factors. Advances in Neonatal Care, 8(3), 165–175. doi: 10.1097/01.ANC.0000324341.24841.6e PubMedCrossRefGoogle Scholar
  58. Davis, E. P., Glynn, L. M., Waffarn, F., & Sandman, C. A. (2011). Prenatal maternal stress programs infant stress regulation. Journal of Child Psychology and Psychiatry, 52(2), 119–129. doi: 10.1111/j.1469-7610.2010.02314.x PubMedCrossRefGoogle Scholar
  59. de Boyer des Roches, A., Durier, V., Richard-Yris, M.-A., Blois-Heulin, C., Ezzaouia, M., Hausberger, M., & Henry, S. (2011). Differential outcomes of unilateral interferences at birth. Biology Letters, 7(2), 177–180. doi: 10.1098/rsbl.2010.0979 PubMedCrossRefGoogle Scholar
  60. de Vries, J. I. P., Visser, G. H. A., & Prechtl, H. F. R. (1985). The emergence of fetal behaviour: II. Quantitative aspects. Early Human Development, gi12(2), 99–120. doi: 10.1016/0378-3782(85)90174-4 CrossRefGoogle Scholar
  61. Debillon, T., Gras-Leguen, C., Boscher, C., & Fleury, M. A. (1998). Les grilles d’évaluation de la douleur chez le nouveau-né: Revue de la littérature. [The grids for the evaluation of pain in the newborn: Review of the literature]. Douleur et Analgésie, 11(4), 167–172. doi: 10.1007/BF03013831
  62. DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208(4448), 1174–1176. doi: 10.1126/science.7375928 PubMedCrossRefGoogle Scholar
  63. DeCasper, A. J., & Spence, M. J. (1986). Prenatal maternal speech influences newborns’ perception of speech sounds. Infant Behavior and Development, 9(2), 133–150. doi: 10.1016/0163-6383(86)90025-1 CrossRefGoogle Scholar
  64. Del Giudice, M. (2011). Alone in the dark? Modeling the conditions for visual experience in human fetuses. Developmental Psychobiology, 53(2), 214–219. doi: 10.1002/dev.20506 PubMedCrossRefGoogle Scholar
  65. Delaunay-El Allam, M., Marlier, L., & Schaal, B. (2006). Learning at the breast: Preference formation for an artificial scent and its attraction against the odor of maternal milk. Infant Behavior and Development, 29(3), 308–321. doi: 10.1016/j.infbeh.2005.12.008 PubMedCrossRefGoogle Scholar
  66. Desor, J. A., Maller, O., & Andrews, K. (1975). Ingestive responses of human newborns to salty, sour, and bitter stimuli. Journal of Comparative and Physiological Psychology, 89(8), 966–970. doi: 10.1037/h0077171 PubMedCrossRefGoogle Scholar
  67. Di Giorgio, E., Leo, I., Pascalis, O., & Simion, F. (2012). Is the face-perception system human-specific at birth? Developmental Psychology, 48(4), 1083–1090. doi: 10.1037/a0026521 PubMedCrossRefGoogle Scholar
  68. Di Giorgio, E., Lunghi, M., Simion, F., & Vallortigara, G. (2016). Visual cues of motion that trigger animacy perception at birth: The case of self-propulsion. Developmental Science. doi: 10.1111/desc.12394 PubMedGoogle Scholar
  69. DiPietro, J. A., Costigan, K. A., & Gurewitsch, E. D. (2003). Fetal response to induced maternal stress. Early Human Development, 74(2), 125–138. doi: 10.1016/j.earlhumdev.2003.07.001 PubMedCrossRefGoogle Scholar
  70. DiPietro, J. A., Kivlighan, K. T., Costigan, K. A., & Laudenslager, M. L. (2009). Fetal motor activity and maternal cortisol. Developmental Psychobiology, 51(6), 505–512. doi: 10.1002/dev.20389 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Doucet, S., Soussignan, R., Sagot, P., & Schaal, B. (2009). The secretion of areolar (Montgomery’s) glands from lactating women elicits selective, unconditional responses in neonates. PLoS ONE, 4(10), e7579. doi: 10.1371/journal.pone.0007579 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Draganova, R., Eswaran, H., Murphy, P., Huotilainen, M., Lowery, C., & Preissl, H. (2005). Sound frequency change detection in fetuses and newborns, a magnetoencephalographic study. NeuroImage, 28(2), 354–361. doi: 10.1016/j.neuroimage.2005.06.011 PubMedCrossRefGoogle Scholar
  73. Dunkeld, J., & Bower, T. G. R. (1980). Infant response to impending optical collision. Perception, 9(5), 549–554. doi: 10.1068/p090549 PubMedCrossRefGoogle Scholar
  74. Durier, V., Henry, S., Martin, E., Dollion, N., Hausberger, M., & Sizun, J. (2015). Unexpected behavioural consequences of preterm newborns’ clothing. Scientific Reports, 5. doi: 10.1038/srep09177
  75. Durier, V., Henry, S., Sankey, C., Sizun, J., & Hausberger, M. (2012). Locomotor inhibition in adult horses faced to stressors: A single postpartum experience may be enough! Comparative Psychology, 3, 442. doi: 10.3389/fpsyg.2012.00442 Google Scholar
  76. Eiselt, M., Curzi-Dascalova, L., Clairambault, J., Kauffmann, F., Médigue, C., & Peirano, P. (1993). Heart-rate variability in low-risk prematurely born infants reaching normal term: A comparison with full-term newborns. Early Human Development, 32(2/3), 183–195. doi: 10.1016/0378-3782(93)90011-I PubMedCrossRefGoogle Scholar
  77. Emory, E. K., Schlackman, L. J., & Fiano, K. (1996). Drug-hormone interactions on neurobehavioral responses in human neonates. Infant Behavior and Development, 19(2), 213–220. doi: 10.1016/S0163-6383(96)90020-X CrossRefGoogle Scholar
  78. Fabrizi, L., Slater, R., Worley, A., Meek, J., Boyd, S., Olhede, S., & Fitzgerald, M. (2011). A shift in sensory processing that enables the developing human brain to discriminate touch from pain. Current Biology, 21(18), 1552–1558. doi: 10.1016/j.cub.2011.08.010 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Fantz, R. L. (1963). Pattern vision in newborn infants. Science, 140(3564), 296–297. doi: 10.1126/science.140.3564.296 PubMedCrossRefGoogle Scholar
  80. Farroni, T., Csibra, G., Simion, F., & Johnson, M. H. (2002). Eye contact detection in humans from birth. Proceedings of the National Academy of Sciences, 99(14), 9602–9605. doi: 10.1073/pnas.152159999 CrossRefGoogle Scholar
  81. Farroni, T., Johnson, M. H., Menon, E., Zulian, L., Faraguna, D., & Csibra, G. (2005). Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17245–17250. doi: 10.1073/pnas.0502205102 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Feldman, R., & Eidelman, A. I. (2003). Skin-to-skin contact (Kangaroo Care) accelerates autonomic and neurobehavioural maturation in preterm infants. Developmental Medicine & Child Neurology, 45(4), 274–281. doi: 10.1111/j.1469-8749.2003.tb00343.x CrossRefGoogle Scholar
  83. Ferber, S. G., & Makhoul, I. R. (2004). The effect of skin-to-skin contact (Kangaroo Care) shortly after birth on the neurobehavioral responses of the term newborn: A randomized, controlled trial. Pediatrics, 113(4), 858–865. doi: 10.1542/peds.113.4.858 PubMedCrossRefGoogle Scholar
  84. Forslund, M., & Bjerre, I. (1983). Neurological assessment of preterm infants at term conceptional age in comparison with normal full-term infants. Early Human Development, 8(3-4), 195–208. doi: 10.1016/0378-3782(83)90002-6 PubMedCrossRefGoogle Scholar
  85. Friedman, S., Bruno, L. A., & Vietze, P. (1974). Newborn habituation to visual stimuli: A sex difference in novelty detection. Journal of Experimental Child Psychology, 18(2), 242–251. doi: 10.1016/0022-0965(74)90104-0 PubMedCrossRefGoogle Scholar
  86. Fulford, J., Vadeyar, S. H., Dodampahala, S. H., Moore, R. J., Young, P., Baker, P. N., … Gowland, P. A. (2003). Fetal brain activity in response to a visual stimulus. Human Brain Mapping, 20(4), 239–245. doi: 10.1002/hbm.10139
  87. Fulford, J., Vadeyar, S. H., Dodampahala, S. H., Ong, S., Moore, R. J., Baker, P. N., … Gowland, P. (2004). Fetal brain activity and hemodynamic response to a vibroacoustic stimulus. Human Brain Mapping, 22(2), 116–121. doi: 10.1002/hbm.20019
  88. Ganchrow, J. R., Steiner, J. E., & Daher, M. (1983). Neonatal facial expressions in response to different qualities and intensities of gustatory stimuli. Infant Behavior and Development, 6(2-3), 189–200. doi: 10.1016/S0163-6383(83)80026-5 CrossRefGoogle Scholar
  89. Gaspardo, C. M., Miyase, C. I., Chimello, J. T., Martinez, F. E., & Martins Linhares, M. B. (2008). Is pain relief equally efficacious and free of side effects with repeated doses of oral sucrose in preterm neonates? Pain, 137(1), 16–25. doi: 10.1016/j.pain.2007.07.032 PubMedCrossRefGoogle Scholar
  90. Gauthaman, G., Jayachandran, L., & Prabhakar, K. (1984). Olfactory reflexes in newborn infants. The Indian Journal of Pediatrics, 51(4), 397–399. doi: 10.1007/bf02776422 PubMedCrossRefGoogle Scholar
  91. Gerhardt, K. J., & Abrams, R. M. (1996). Fetal hearing: Characterization of the stimulus and response. Seminars in Perinatology, 20(1), 11–20. doi: 10.1016/S0146-0005(96)80053-X PubMedCrossRefGoogle Scholar
  92. Giannakoulopoulos, X., Glover, V., Sepulveda, W., Kourtis, P., & Fisk, N. M. (1994). Fetal plasma cortisol and β-endorphin response to intrauterine needling. The Lancet, 344(8915), 77–81. doi: 10.1016/S0140-6736(94)91279-3 CrossRefGoogle Scholar
  93. Gibbins, S., Stevens, B., McGrath, P. J., Yamada, J., Beyene, J., Breau, L., … Ohlsson, A. (2008). Comparison of pain responses in infants of different gestational ages. Neonatology, 93(1), 10–18. doi: 10.1159/000105520
  94. Gitau, R., Modi, N., Gianakoulopoulos, X., Bond, C., Glover, V., & Stevenson, J. (2002). Acute effects of maternal skin-to-skin contact and massage on saliva cortisol in preterm babies. Journal of Reproductive and Infant Psychology, 20(2), 83–88. doi: 10.1080/02646830220134595 CrossRefGoogle Scholar
  95. Glover, V., & Fisk, N. M. (1999). Fetal pain: Implications for research and practice. BJOG: An International Journal of Obstetrics & Gynaecology, 106(9), 881–886. doi: 10.1111/j.1471-0528.1999.tb08424.x CrossRefGoogle Scholar
  96. Gottlieb, G. (1968). Prenatal behavior of birds. The Quarterly Review of Biology, 43(2), 148–174.PubMedCrossRefGoogle Scholar
  97. Gottlieb, G. (1971). Ontogenesis of sensory function in birds and mammals. In E. Tobach, L. R. Aronson, & E. Shaw (Eds.), The biopsychology of development (pp. 67–128). New York, NY: Academic Press.Google Scholar
  98. Gottlieb, G. (1991). Experiential canalization of behavioral development: Theory. Developmental Psychology, 27(1), 4–13.CrossRefGoogle Scholar
  99. Gottlieb, G., & Lickliter, R. (2004). The various roles of animal models in understanding human development. Social Development, 13(2), 311–325. doi: 10.1111/j.1467-9507.2004.000269.x CrossRefGoogle Scholar
  100. Goubet, N., Rattaz, C., Pierrat, V., Allémann, E., Bullinger, A., & Lequien, P. (2002). Olfactory familiarization and discrimination in preterm and full-term newborns. Infancy, 3(1), 53–75. doi: 10.1207/s15327078in0301_3 CrossRefGoogle Scholar
  101. Goubet, N., Rattaz, C., Pierrat, V., Bullinger, A., & Lequien, P. (2003). Olfactory experience mediates response to pain in preterm newborns. Developmental Psychobiology, 42(2), 171–180. doi: 10.1002/dev.10085 PubMedCrossRefGoogle Scholar
  102. Graven, S. N. (2000). Sound and the developing infant in the NICU: Conclusions and recommendations for care. Journal of Perinatology, 20(8 Pt. 2), S88–S593.PubMedCrossRefGoogle Scholar
  103. Graven, S. N., & Browne, J. V. (2008). Sensory development in the fetus, neonate, and infant: Introduction and overview. Newborn and Infant Nursing Reviews, 8(4), 169–172. doi: 10.1053/j.nainr.2008.10.007 CrossRefGoogle Scholar
  104. Gray, L., Watt, L., & Blass, E. M. (2000). Skin-to-skin contact is analgesic in healthy newborns. Pediatrics, 105(1), e14.PubMedCrossRefGoogle Scholar
  105. Grunau, R. E., & Craig, K. D. (1987). Pain expression in neonates: Facial action and cry. Pain, 28(3), 395–410. doi: 10.1016/0304-3959(87)90073-X PubMedCrossRefGoogle Scholar
  106. Grunau, R. E., Holsti, L., & Peters, J. W. B. (2006). Long-term consequences of pain in human neonates. Seminars in Fetal and Neonatal Medicine, 11(4), 268–275. doi: 10.1016/j.siny.2006.02.007 PubMedCrossRefGoogle Scholar
  107. Grunau, R. E., Johnston, C. C., & Craig, K. D. (1990). Neonatal facial and cry responses to invasive and non-invasive procedures. Pain, 42(3), 295–305. doi: 10.1016/0304-3959(90)91142-6 PubMedCrossRefGoogle Scholar
  108. Guellaï, B., Coulon, M., & Streri, A. (2011). The role of motion and speech in face recognition at birth. Visual Cognition, 19(9), 1212–1233. doi: 10.1080/13506285.2011.620578 CrossRefGoogle Scholar
  109. Guellaï, B., & Streri, A. (2011). Cues for Early Social Skills: Direct gaze modulates newborns’ recognition of talking faces. PLoS ONE, 6(4), e18610. doi: 10.1371/journal.pone.0018610 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Guinsburg, R., Fernanda, M., Almeida, B., Perez, C. A., Balda, R. C. X., Berenguel, R. C., … Kopelman, B. I. (1999). Differences in pain expression between male and female newborn infants. Pediatric Research, 45(4, Pt. 2 of 2), 200A–200A. doi: 10.1203/00006450-199904020-01188
  111. Hahn, W. K. (1987). Cerebral lateralization of function: From infancy through childhood. Psychological Bulletin, 101(3), 376–392. doi: 10.1037/0033-2909.101.3.376 PubMedCrossRefGoogle Scholar
  112. Hall, J. R. (2000). Development of the ear and hearing. Journal of Perinatology: Official Journal of the California Perinatal Association, 20(8, Pt. 2), S12–S20.CrossRefGoogle Scholar
  113. Hammer, M., & Turkewitz, G. (1974). A sensory basis for the lateral difference in the newborn infant’s response to somesthetic stimulation. Journal of Experimental Child Psychology, 18(2), 304–312. doi: 10.1016/0022-0965(74)90110-6 PubMedCrossRefGoogle Scholar
  114. Hamon, I. (1996). Voies anatomiques de la douleur chez le nouveau-né prématuré. [Anatomical pathways of pain in preterm infants]. Archives de Pédiatrie, 3(10), 1006–1012. doi: 10.1016/0929-693X(96)81724-6
  115. Harrison, D., Boyce, S., Loughnan, P., Dargaville, P., Storm, H., & Johnston, L. (2006). Skin conductance as a measure of pain and stress in hospitalised infants. Early Human Development, 82(9), 603–608. doi: 10.1016/j.earlhumdev.2005.12.008 PubMedCrossRefGoogle Scholar
  116. Hausberger, M., Henry, S., Larose, C., & Richard-Yris, M.-A. (2007). First suckling: A crucial event for mother-young attachment? An experimental study in horses (Equus caballus). Journal of Comparative Psychology, 121(1), 109–112. doi: 10.1037/0735-7036.121.1.109 PubMedCrossRefGoogle Scholar
  117. Haynes, H., White, B. L., & Held, R. (1965). Visual accommodation in human infants. Science, 148(3669), 528–530. doi: 10.1126/science.148.3669.528 PubMedCrossRefGoogle Scholar
  118. Hendrickson, A., & Drucker, D. (1992). The development of parafoveal and mid-peripheral human retina. Behavioural Brain Research, 49(1), 21–31. doi: 10.1016/S0166-4328(05)80191-3 PubMedCrossRefGoogle Scholar
  119. Henry, S., Richard-Yris, M. A., Tordjman, S., & Hausberger, M. (2009). Neonatal handling affects durably bonding and social development. PLoS ONE, 4(4), e5216. doi: 10.1371/journal.pone.0005216 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Hepper, P. G., & Shahidullah, B. S. (1994). The development of fetal hearing. Fetal and Maternal Medicine Review, 6(03), 167–179. doi: 10.1017/S0965539500001108 CrossRefGoogle Scholar
  121. Hepper, P. G., Shahidullah, S., & White, R. (1991). Handedness in the human fetus. Neuropsychologia, 29(11), 1107–1111. doi: 10.1016/0028-3932(91)90080-R PubMedCrossRefGoogle Scholar
  122. Hernandez-Reif, M., Field, T., Diego, M., & Largie, S. (2001). Weight perception by newborns of depressed versus non-depressed mothers. Infant Behavior and Development, 24(3), 305–316. doi: 10.1016/S0163-6383(01)00081-9 CrossRefGoogle Scholar
  123. Hersch, M., & Ganchrow, D. (1980). Scanning electron microscopy of developing papillae on the tongue of human embryos and fetuses. Chemical Senses, 5(4), 331–341. doi: 10.1093/chemse/5.4.331 CrossRefGoogle Scholar
  124. Holditch-Davis, D., Scher, M., Schwartz, T., & Hudson–Barr, D. (2004). Sleeping and waking state development in preterm infants. Early Human Development, 80(1), 43–64. doi: 10.1016/j.earlhumdev.2004.05.006 PubMedCrossRefGoogle Scholar
  125. Hooker, D. (1942). Fetal reflexes and instinctual processes. Psychosomatic Medicine, 4(2), 199–205.CrossRefGoogle Scholar
  126. Hooker, D. (1952). The prenatal origin of behavior. Lawrence: University of Kansas Press.Google Scholar
  127. Hubel, D. H., & Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. The Journal of Physiology, 206(2), 419–436.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Humphrey, T. (1970). Reflex activity in the oral and facial area of the human fetus. In J. F. Bosma (Ed.), Second symposium on oral sensation and perception. Springfield, IL: Thomas.Google Scholar
  129. Humphrey, T. (1978). Function of the nervous system during prenatal life. In U. Stave (Ed.), Perinatal physiology (pp. 651–683). Boston, MA: Springer US.CrossRefGoogle Scholar
  130. Hykin, J., Moore, R., Duncan, K., Clare, S., Baker, P., Johnson, I., … Gowland, P. (1999). Fetal brain activity demonstrated by functional magnetic resonance imaging. The Lancet, 354(9179), 645–646. doi: 10.1016/S0140-6736(99)02901-3
  131. Issel, E. P. (1983). Fetal response to external mechanical stimuli. Journal of Perinatal Medicine, 11(5), 232–242. doi: 10.1515/jpme.1983.11.5.232 PubMedCrossRefGoogle Scholar
  132. Jaldo-Alba, F., Muñóz-Hoyos, A., Molina-Carballo, A., Molina-Font, J. A., & Acuña-Castroviejo, D. (1993). Light deprivation increases plasma levels of melatonin during the first 72 h of life in human infants. Acta Endocrinologica, 129(5), 442–445. doi: 10.1530/acta.0.1290442 PubMedGoogle Scholar
  133. James, D. K., Spencer, C. J., & Stepsis, B. W. (2002). Fetal learning: A prospective randomized controlled study. Ultrasound in Obstetrics and Gynecology, 20(5), 431–438. doi: 10.1046/j.1469-0705.2002.00845.x PubMedCrossRefGoogle Scholar
  134. Jandó, G., Mikó-Baráth, E., Markó, K., Hollódy, K., Török, B., & Kovacs, I. (2012). Early-onset binocularity in preterm infants reveals experience-dependent visual development in humans. Proceedings of the National Academy of Sciences, 109(27), 11049–11052. doi: 10.1073/pnas.1203096109 CrossRefGoogle Scholar
  135. Johnston, C. C., Stevens, B., Craig, K. D., & Grunau, R. V. E. (1993). Developmental changes in pain expression in premature, full-term, two- and four-month-old infants. Pain, 52(2), 201–208. doi: 10.1016/0304-3959(93)90132-9 PubMedCrossRefGoogle Scholar
  136. Johnston, C. C., Stevens, B. J., Yang, F., & Horton, L. (1995). Differential response to pain by very premature neonates. Pain, 61(3), 471–479. doi: 10.1016/0304-3959(94)00213-X PubMedCrossRefGoogle Scholar
  137. Joseph, J. P., Lesevre, N., & Dreyfus-Brisac, C. (1976). Spatio-temporal organization of EEG in premature infants and full-term new-borns. Electroencephalography and Clinical Neurophysiology, 40(2), 153–168. doi: 10.1016/0013-4694(76)90160-7 PubMedCrossRefGoogle Scholar
  138. Kawakami, K., Takai-Kawakami, K., Masuda, N., Suzuki, M., Shimizu, Y., & Yanaihara, T. (2002). Measuring human fetal responses to sounds by umbilical and middle-cerebral artery velocity waveforms: A preliminary study. Research and Clinical Center for Child Development, Annual Report, 24, 25–33.Google Scholar
  139. Kenner, C., & Lubbe, W. (2007). Fetal stimulation—A preventative therapy. Newborn and Infant Nursing Reviews, 7(4), 227–230. doi: 10.1053/j.nainr.2007.06.013 CrossRefGoogle Scholar
  140. Kisilevsky, B. S., Fearon, I., & Muir, D. W. (1998). Fetuses differentiate vibroacoustic stimuli. Infant Behavior and Development, 21(1), 25–46. doi: 10.1016/S0163-6383(98)90053-4 CrossRefGoogle Scholar
  141. Kisilevsky, B. S., & Hains, S. M. J. (2011). Onset and maturation of fetal heart rate response to the mother’s voice over late gestation. Developmental Science, 14(2), 214–223. doi: 10.1111/j.1467-7687.2010.00970.x PubMedCrossRefGoogle Scholar
  142. Kisilevsky, B. S., Hains, S. M. J., Brown, C. A., Lee, C. T., Cowperthwaite, B., Stutzman, S. S., … Wang, Z. (2009). Fetal sensitivity to properties of maternal speech and language. Infant Behavior and Development, 32(1), 59–71. doi: 10.1016/j.infbeh.2008.10.002
  143. Kisilevsky, B. S., Pang, L., & Hains, S. M. J. (2000). Maturation of human fetal responses to airborne sound in low- and high-risk fetuses. Early Human Development, 58(3), 179–195. doi: 10.1016/S0378-3782(00)00075-X PubMedCrossRefGoogle Scholar
  144. Kisilvesky, B. S., & Muir, D. W. (1991). Human fetal and subsequent newborn responses to sound and vibration. Infant Behavior and Development, 14(1), 1–26. doi: 10.1016/0163-6383(91)90051-S CrossRefGoogle Scholar
  145. Kiuchi, M., Nagata, N., Ikeno, S., & Terakawa, N. (2000). The relationship between the response to external light stimulation and behavioral states in the human fetus: How it differs from vibroacoustic stimulation. Early Human Development, 58(2), 153–165. doi: 10.1016/S0378-3782(00)00074-8 PubMedCrossRefGoogle Scholar
  146. Kuhn, P., Zores, C., Pebayle, T., Hoeft, A., Langlet, C., Escande, B., … Dufour, A. (2012). Infants born very preterm react to variations of the acoustic environment in their incubator from a minimum signal-to-noise ratio threshold of 5 to 10 dBA. Pediatric Research, 71(4/1), 386–392. doi: 10.1038/pr.2011.76
  147. Laquerrière, A. (2010). Mise en place des voies de la douleur chez le fœtus. [Implementation of pathways of pain in the fetus]. Médecine Thérapeutique/Médecine de la Reproduction, Gynécologie et Endocrinologie, 12(2), 111–115. doi: 10.1684/mte.2010.0285
  148. Lasky, R. E., & Williams, A. L. (2009). Noise and Light exposures for extremely low birth weight newborns during their stay in the neonatal intensive care unit. Pediatrics, 123(2), 540–546. doi: 10.1542/peds.2007-3418 PubMedCrossRefGoogle Scholar
  149. Laudert, S., Liu, W. F., Blackington, S., Perkins, B., Martin, S., MacMillan-York, E., … Handyside, J. (2007). Implementing potentially better practices to support the neurodevelopment of infants in the NICU. Journal of Perinatalogy, 27(S2), S75–S93.Google Scholar
  150. Lawn, J. E., Mwansa-Kambafwile, J., Horta, B. L., Barros, F. C., & Cousens, S. (2010). ‘Kangaroo mother care’ to prevent neonatal deaths due to preterm birth complications. International Journal of Epidemiology, 39, i144–i154. doi: 10.1093/ije/dyq031 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Leader, L. R., Baillie, P., Martin, B., & Vermeulen, E. (1982). The assessment and significance of habituation to a repeated stimulus by the human fetus. Early Human Development, 7(3), 211–219. doi: 10.1016/0378-3782(82)90084-6 PubMedCrossRefGoogle Scholar
  152. Lecanuet, J.-P., & Schaal, B. (1996). Fetal sensory competencies. European Journal of Obstetrics & Gynecology and Reproductive Biology, 68, 1–23. doi: 10.1016/0301-2115(96)02509-2 CrossRefGoogle Scholar
  153. Lecanuet, J.-P., & Schaal, B. (2002). Sensory performances in the human foetus: A brief summary of research. Intellectica, 1(34), 29–56.Google Scholar
  154. Lehmann, J., & Feldon, J. (2000). Long-term biobehavioral effects of maternal separation in the rat: Consistent or confusing? Reviews in the Neurosciences, 11(4), 383–408. doi: 10.1515/REVNEURO.2000.11.4.383 PubMedCrossRefGoogle Scholar
  155. Lewkowicz, D. J., & Turkewitz, G. (1981). Intersensory interaction in newborns—Modification of visual preferences following exposure to sound. Child Development, 52(3), 827–832. doi: 10.2307/1129083 PubMedCrossRefGoogle Scholar
  156. Lickliter, R. (1990a). Premature visual experience facilitates visual responsiveness in bobwhite quail neonates. Infant Behavior and Development, 13(4), 487–496. doi: 10.1016/0163-6383(90)90018-4 CrossRefGoogle Scholar
  157. Lickliter, R. (1990b). Premature visual stimulation accelerates intersenory functioning in bobwhite quail neonates. Developmental Psychobiology, 23(1), 15–27. doi: 10.1002/dev.420230103 PubMedCrossRefGoogle Scholar
  158. Lickliter, R. (1994). Prenatal visual experience alters postnatal sensory dominance hierarchy in bobwhite quail chicks. Infant Behavior and Development, 17(2), 185–193. doi: 10.1016/0163-6383(94)90054-X CrossRefGoogle Scholar
  159. Lickliter, R. (2000). Atypical perinatal sensory stimulation and early perceptual development: Insights from developmental psychobiology. Journal of Perinatology: Official Journal of the California Perinatal Association, 20(8, Pt. 2), S45–S54.CrossRefGoogle Scholar
  160. Lickliter, R. (2005). Prenatal sensory ecology and experience: Implications for perceptual and behavioral development in precocial birds. In P. Slater, C. Snowdon, T. Roper, H. J. Brockmann, & M. Naguib (Eds.), Advances in the study of behavior (Vol. 35, pp. 235–274). San Diego, CA: Academic Press.Google Scholar
  161. Lickliter, R., & Bahrick, L. E. (2007). Thinking about development: The value of animal-based research for the study of human development. European Journal of Developmental Science, 1(2), 172–183.PubMedPubMedCentralGoogle Scholar
  162. Lickliter, R., & Hellewell, T. B. (1992). Contextual determinants of auditory learning in bobwhite quail embryos and hatchlings. Developmental Psychobiology, 25(1), 17–31. doi: 10.1002/dev.420250103 PubMedCrossRefGoogle Scholar
  163. Liley, A. W. (1972). The foetus as a personality. Australian and New Zealand Journal of Psychiatry, 6(2), 99–105. doi: 10.3109/00048677209159688 PubMedCrossRefGoogle Scholar
  164. Liu, W. F., Laudert, S., Perkins, B., MacMillan-York, E., Martin, S., & Graven, S. (2007). The development of potentially better practices to support the neurodevelopment of infants in the NICU. Journal of Perinatalogy, 27(S2), S48–S74.CrossRefGoogle Scholar
  165. Livera, M. D., Priya, B., Ramesh, A., Rao, P. N. S., Srilakshmi, V., Nagapoornima, M., … Swarnarekha. (2008). Spectral analysis of noise in the neonatal intensive care unit. The Indian Journal of Pediatrics, 75(3), 217–222. doi: 10.1007/s12098-008-0048-z
  166. Long, J. G., Lucey, J. F., & Philip, A. G. S. (1980). Noise and hypoxemia in the intensive care nursery. Pediatrics, 65(1), 143–145.PubMedGoogle Scholar
  167. Long, J. G., Philip, A. G. S., & Lucey, J. F. (1980). Excessive handling as a cause of hypoxemia. Pediatrics, 65(2), 203–207.PubMedGoogle Scholar
  168. Mann, N. P., Haddow, R., Stokes, L., Goodley, S., & Rutter, N. (1986). Effect of night and day on preterm infants in a newborn nursery: Randomised trial. British Medical Journal (Clinical Research Ed.), 293(6557), 1265–1267. doi: 10.1136/bmj.293.6557.1265 CrossRefGoogle Scholar
  169. Marcus, L., Lejeune, F., Berne-Audéoud, F., Gentaz, E., & Debillon, T. (2012). Tactile sensory capacity of the preterm infant: Manual perception of shape from 28 gestational weeks. Pediatrics, 130(1), e88–e94. doi: 10.1542/peds.2011-3357 PubMedCrossRefGoogle Scholar
  170. Marlier, L., Schaal, B., & Soussignan, R. (1998a). Bottle-fed neonates prefer an odor experienced in utero to an odor experienced postnatally in the feeding context. Developmental Psychobiology, 33(2), 133–145. doi: 10.1002/(sici)1098-2302(199809)33:2<133::aid-dev4>;2-k PubMedCrossRefGoogle Scholar
  171. Marlier, L., Schaal, B., & Soussignan, R. (1998b). Neonatal responsiveness to the odor of amniotic and lacteal fluids: A test of perinatal chemosensory continuity. Child Development, 69(3), 611–623. doi: 10.1111/j.1467-8624.1998.tb06232.x PubMedCrossRefGoogle Scholar
  172. Mastropieri, D., & Turkewitz, G. (1999). Prenatal experience and neonatal responsiveness to vocal expressions of emotion. Developmental Psychobiology, 35(3), 204–214. doi: 10.1002/(SICI)1098-2302(199911)35:3<204::AID-DEV5>3.0.CO;2-V PubMedCrossRefGoogle Scholar
  173. Meltzoff, A. N., & Keith, M. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 75–78. doi: 10.1126/science.198.4312.75 PubMedCrossRefGoogle Scholar
  174. Mennella, J. A., Johnson, A., & Beauchamp, G. K. (1995). Garlic ingestion by pregnant women alters the odor of amniotic fluid. Chemical Senses, 20(2), 207–209. doi: 10.1093/chemse/20.2.207 PubMedCrossRefGoogle Scholar
  175. Mikiel-Kostyra, K., Mazur, J., & Boltruszko, I. (2002). Effect of early skin-to-skin contact after delivery on duration of breastfeeding: A prospective cohort study. Acta Paediatrica, 91(12), 1301–1306. doi: 10.1111/j.1651-2227.2002.tb02824.x PubMedCrossRefGoogle Scholar
  176. Miranda, S. B. (1970). Visual abilities and pattern preferences of premature infants and full-term neonates. Journal of Experimental Child Psychology, 10(2), 189–205. doi: 10.1016/0022-0965(70)90071-8 PubMedCrossRefGoogle Scholar
  177. Miranda-Morales, R. S., Nizhnikov, M. E., & Spear, N. E. (2014). Prenatal exposure to ethanol during late gestation facilitates operant self-administration of the drug in 5-day-old rats. Alcohol, 48(1), 19–23. doi: 10.1016/j.alcohol.2013.11.001 PubMedCrossRefGoogle Scholar
  178. Miura, M., & Matsushima, T. (2012). Preference for biological motion in domestic chicks: Sex-dependent effect of early visual experience. Animal Cognition, 15(5), 871–879. doi: 10.1007/s10071-012-0514-x PubMedCrossRefGoogle Scholar
  179. Molina, M., & Jouen, F. (2003). Haptic intramodal comparison of texture in human neonates. Developmental Psychobiology, 42(4), 378–385. doi: 10.1002/dev.10111 PubMedCrossRefGoogle Scholar
  180. Mooncey, S., Giannakoulopoulos, X., Glover, V., Acolet, D., & Modi, N. (1997). The effect of mother-infant skin-to-skin contact on plasma cortisol and β-endorphin concentrations in preterm newborns. Infant Behavior and Development, 20(4), 553–557. doi: 10.1016/S0163-6383(97)90045-X CrossRefGoogle Scholar
  181. Mooney, M. P., Siegel, M. I., & Gest, T. R. (1985). Prenatal stress and increased fluctuating asymmetry in the parietal bones of neonatal rats. American Journal of Physical Anthropology, 68(1), 131–134. doi: 10.1002/ajpa.1330680112 PubMedCrossRefGoogle Scholar
  182. Mörelius, E., Hellström-Westas, L., Carlén, C., Norman, E., & Nelson, N. (2006). Is a nappy change stressful to neonates? Early Human Development, 82(10), 669–676. doi: 10.1016/j.earlhumdev.2005.12.013 PubMedCrossRefGoogle Scholar
  183. Morison, S. J., Holsti, L., Grunau, R. E., Whitfield, M. F., Oberlander, T. F., Chan, H. W. P., & Williams, L. (2003). Are there developmentally distinct motor indicators of pain in preterm infants? Early Human Development, 72, 131–146. doi: 10.1016/S0378-3782(03)00044-6 PubMedCrossRefGoogle Scholar
  184. Morlet, T., Lapillonne, A., Ferber, C., Duclaux, R., Sann, L., Putet, G., … Collet, L. (1995). Spontaneous otoacoustic emissions in preterm neonates: Prevalence and gender effects. Hearing Research, 90(1/2), 44–54. doi: 10.1016/0378-5955(95)00144-4
  185. Nagy, E., Orvos, H., Bárdos, G., & Molnár, P. (2000). Gender-related heart rate differences in human neonates. Pediatric Research, 47(6), 778–780. doi: 10.1203/00006450-200006000-00016 PubMedCrossRefGoogle Scholar
  186. Nakayasu, T., & Watanabe, E. (2014). Biological motion stimuli are attractive to medaka fish. Animal Cognition, 17(3), 559–575. doi: 10.1007/s10071-013-0687-y PubMedCrossRefGoogle Scholar
  187. Owens, M. E., & Todt, E. H. (1984). Pain in infancy: Neonatal reaction to a heel lance. Pain, 20(1), 77–86. doi: 10.1016/0304-3959(84)90813-3 PubMedCrossRefGoogle Scholar
  188. Parmelee, A. H., Wenner, W. H., Akiyama, Y., Schultz, M., & Stern, E. (1967). Sleep states in premature infants. Developmental Medicine & Child Neurology, 9(1), 70–77. doi: 10.1111/j.1469-8749.1967.tb02212.x CrossRefGoogle Scholar
  189. Peirano, P., Curzi-Dascalova, L., & Korn, G. (1986). Influence of sleep state and age on body motility in normal premature and full-term neonates. Neuropediatrics, 17(4), 186–190. doi: 10.1055/s-2008-1052526 PubMedCrossRefGoogle Scholar
  190. Peleg, D., & Goldman, J. A. (1980). Fetal heart rate acceleration in response to light stimulation as a clinical measure of fetal well-being: A preliminary report. Journal of Perinatal Medicine, 8, 38–41. doi: 10.1515/jpme.1980.8.1.38 PubMedCrossRefGoogle Scholar
  191. Petrikovsky, B. M., Schifrin, B., & Diana, L. (1993). The effect of fetal acoustic stimulation on fetal swallowing and amniotic fluid index. Obstetrics & Gynecology, 81(4), 548–550.Google Scholar
  192. Philbin, M. K. (2000). The influence of auditory experience on the behavior of preterm newborns. Journal of Perinatology, 20(8, Pt. 2), S77–S87.PubMedCrossRefGoogle Scholar
  193. Philbin, M. K., Lickliter, R., & Graven, S. N. (2000). Sensory experience and the developing organism: A history of ideas and view to the future. Journal of Perinatology: Official Journal of the California Perinatal Association, 20(8, Pt. 2), S2–S5.CrossRefGoogle Scholar
  194. Piatkina, G. (1982). Development of human olfactory receptors. Tsitologiia, 24(1), 11.PubMedGoogle Scholar
  195. Pihet, S., Mellier, D., Bullinger, A., & Schaal, B. (1997). Réponses comportementales aux odeurs chez le nouveau-né prématuré: Étude préliminaire. [Behavioral responses to odors in preterm infants: Preliminary study]. Enfance, 50(1), 33–46. doi: 10.3406/enfan.1997.3044
  196. Piontelli, A., Bocconi, L., Kustermann, A., Tassis, B., Zoppini, C., & Nicolini, U. (1997). Patterns of evoked behaviour in twin pregnancies during the first 22 weeks of gestation. Early Human Development, 50(1), 39–45. doi: 10.1016/S0378-3782(97)00091-1 PubMedCrossRefGoogle Scholar
  197. Prazad, P., Cortes, D. R., Puppala, B. L., Donovan, R., Kumar, S., & Gulati, A. (2008). Airborne concentrations of volatile organic compounds in neonatal incubators. Journal of Perinatology, 28(8), 534–540. doi: 10.1038/jp.2008.75 PubMedCrossRefGoogle Scholar
  198. Prechtl, H. F. R. (1974). The behavioural states of the newborn infant (a review). Brain Research, 76(2), 185–212. doi: 10.1016/0006-8993(74)90454-5 PubMedCrossRefGoogle Scholar
  199. Pritchard, J. A. (1965). Deglutition by normal and anencephalic fetuses. Obstetrics & Gynecology, 25(3), 289–297.Google Scholar
  200. Pryce, C. R., Rüedi-Bettschen, D., Dettling, A. C., Weston, A., Russig, H., Ferger, B., & Feldon, J. (2005). Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research. Neuroscience and Biobehavioral Reviews, 29, 649–674. doi: 10.1016/j.neubiorev.2005.03.011 PubMedCrossRefGoogle Scholar
  201. Pujol, R., & Lavigne-Rebillard, M. (1985). Early stages of innervation and sensory cell differentiation in the human fetal organ of Corti. Acta Oto-Laryngologica, 99, 43–50. doi: 10.3109/00016488509122911 CrossRefGoogle Scholar
  202. Pujol, R., & Lavigne-Rebillard, M. (1992). Development of neurosensory structures in the human cochlea. Acta Oto-Laryngologica, 112, 259–264. doi: 10.1080/00016489.1992.11665415 PubMedCrossRefGoogle Scholar
  203. Pujol, R., Lavigne-Rebillard, M., & Uziel, A. (1991). Development of the human cochlea. Acta Oto-Laryngologica, 111, 7–13. doi: 10.3109/00016489109128023 CrossRefGoogle Scholar
  204. Pujol, R., Puel, J.-L., Gervais D’aldin, C., & Eybalin, M. (1993). Pathophysiology of the glutamatergic synapses in the cochlea. Acta Oto-Laryngologica, 113(3), 330–334. doi: 10.3109/00016489309135819 PubMedCrossRefGoogle Scholar
  205. Puolakka, J., Kauppila, A., Leppäluoto, J., & Vuolteenaho, O. (1982). Elevated β-endorphin immunoreactivity in umbilical cord blood after complicated delivery. Acta Obstetricia et Gynecologica Scandinavica, 61(6), 513–514. doi: 10.3109/00016348209156604 PubMedCrossRefGoogle Scholar
  206. Querleu, D., Renard, X., Boutteville, C., & Crepin, G. (1989). Hearing by the human fetus? Seminars in Perinatology, 13, 409–420.PubMedGoogle Scholar
  207. Querleu, D., Renard, X., Versyp, F., Paris-Delrue, L., & Crèpin, G. (1988). Fetal hearing. European Journal of Obstetrics & Gynecology and Reproductive Biology, 28(3), 191–212. doi: 10.1016/0028-2243(88)90030-5 CrossRefGoogle Scholar
  208. Radell, P. L., & Gottlieb, G. (1992). Developmental intersensory interference: Augmented prenatal sensory experience interferes with auditory learning in duck embryos. Developmental Psychology, 28(5), 795–803.CrossRefGoogle Scholar
  209. Ratynski, N., Cioni, G., Franck, L., Blanchard, Y., & Sizun, J. (2002). The neonatal behavioral observation: A pertinent source of medical informations. Archives de Pédiatrie, 9(12), 1274–1279. doi: 10.1016/S0929-693X(02)00085-4 PubMedCrossRefGoogle Scholar
  210. Ricci, D., Cesarini, L., Groppo, M., De Carli, A., Gallini, F., Serrao, F., … Mosca, F. (2008). Early assessment of visual function in full term newborns. Early Human Development, 84(2), 107–113. doi: 10.1016/j.earlhumdev.2007.03.010
  211. Ricci, D., Romeo, D. M., Serrao, F., Cesarini, L., Gallini, F., Cota, F., … Mercuri, E. (2008). Application of a neonatal assessment of visual function in a population of low risk full-term newborn. Early Human Development, 84, 277–280. doi: 10.1016/j.earlhumdev.2007.10.002
  212. Ricci, D., Romeo, D. M., Serrao, F., Gallini, F., Leone, D., Longo, M., … Mercuri, E. (2010). Early assessment of visual function in preterm infants: How early is early? Early Human Development, 86(1), 29–33. doi: 10.1016/j.earlhumdev.2009.11.004
  213. Richards, D. S., Frentzen, B., Gerhardt, K. J., Mccann, M. E., & Abrams, R. M. (1992). Sound levels in the human uterus. Obstetrics & Gynecology, 80(2), 186–190.Google Scholar
  214. Rivkees, S. A., Mayes, L., Jacobs, H., & Gross, I. (2004). Rest-activity patterns of premature infants are regulated by cycled lighting. Pediatrics, 113(4), 833–839.PubMedCrossRefGoogle Scholar
  215. Rogers, L. J. (2008). Development and function of lateralization in the avian brain. Brain Research Bulletin, 76(3), 235–244. doi: 10.1016/j.brainresbull.2008.02.001 PubMedCrossRefGoogle Scholar
  216. Rogers, L. J. (2014). Asymmetry of brain and behavior in animals: Its development, function, and human relevance. Genesis, 52(6), 555–571. doi: 10.1002/dvg.22741 PubMedCrossRefGoogle Scholar
  217. Romeo, D. M., Ricci, D., Serrao, F., Gallini, F., Olivieri, G., Cota, F., … Mercuri, E. (2012). Visual function assessment in late-preterm newborns. Early Human Development, 88(5), 301–305. doi: 10.1016/j.earlhumdev.2011.08.024
  218. Ronca, A., Fritzsch, B., Bruce, L. L., & Alberts, J. R. (2008). Orbital spaceflight during pregnancy shapes function of mammalian vestibular system. Behavioral Neuroscience, 122(1), 224–232. doi: 10.1037/0735-7044.122.1.224 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Rönnqvist, L., & Hopkins, B. (1998). Head position preference in the human newborn: A new look. Child Development, 69(1), 13–23. doi: 10.1111/j.1467-8624.1998.tb06129.x PubMedCrossRefGoogle Scholar
  220. Rosa Salva, O., Farroni, T., Regolin, L., Vallortigara, G., & Johnson, M. H. (2011). The evolution of social orienting: Evidence from chicks (Gallus gallus) and human newborns. PLoS ONE, 6(4), e18802. doi: 10.1371/journal.pone.0018802 PubMedPubMedCentralCrossRefGoogle Scholar
  221. Rosa Salva, O., Mayer, U., & Vallortigara, G. (2015). Roots of a social brain: Developmental models of emerging animacy-detection mechanisms. Neuroscience & Biobehavioral Reviews, 50, 150–168. doi: 10.1016/j.neubiorev.2014.12.015 CrossRefGoogle Scholar
  222. Rosa Salva, O., Regolin, L., & Vallortigara, G. (2010). Faces are special for newly hatched chicks: Evidence for inborn domain-specific mechanisms underlying spontaneous preferences for face-like stimuli. Developmental Science, 13(4), 565–577. doi: 10.1111/j.1467-7687.2009.00914.x PubMedCrossRefGoogle Scholar
  223. Rosa Salva, O., Regolin, L., & Vallortigara, G. (2012). Inversion of contrast polarity abolishes spontaneous preferences for face-like stimuli in newborn chicks. Behavioural Brain Research, 228(1), 133–143. doi: 10.1016/j.bbr.2011.11.025 PubMedCrossRefGoogle Scholar
  224. Rosenstein, D., & Oster, H. (1988). Differential facial responses to four basic tastes in newborns. Child Development, 59(6), 1555–1568. doi: 10.2307/1130670 PubMedCrossRefGoogle Scholar
  225. Rotteveel, J. J., de Graaf, R., Colon, E. J., Stegeman, D. F., & Visco, Y. M. (1987). The maturation of the central auditory conduction in preterm infants until three months post term: II. The auditory brainstem responses (ABRs). Hearing Research, 26(1), 21–35. doi: 10.1016/0378-5955(87)90033-5 PubMedCrossRefGoogle Scholar
  226. Rugani, R., Rosa Salva, O., Regolin, L., & Vallortigara, G. (2015). Brain asymmetry modulates perception of biological motion in newborn chicks (Gallus gallus). Behavioural Brain Research, 290, 1–7. doi: 10.1016/j.bbr.2015.04.032 PubMedCrossRefGoogle Scholar
  227. Sann, C., & Streri, A. (2007). Perception of object shape and texture in human newborns: Evidence from cross-modal transfer tasks. Developmental Science, 10(3), 399–410. doi: 10.1111/j.1467-7687.2007.00593.x PubMedCrossRefGoogle Scholar
  228. Sarnat, H. B. (1978). Olfactory reflexes in the newborn infant. The Journal of Pediatrics, 92(4), 624–626. doi: 10.1016/S0022-3476(78)80307-2 PubMedCrossRefGoogle Scholar
  229. Schaal, B., Hummel, T., & Soussignan, R. (2004). Olfaction in the fetal and premature infant: Functional status and clinical implications. Clinics in Perinatology, 31(2), 261. doi: 10.1016/j.clp.2004.04.003 PubMedCrossRefGoogle Scholar
  230. Schaal, B., Marlier, L., & Soussignan, R. (1995). Responsiveness to the odour of amniotic fluid in the human neonate. Neonatology, 67(6), 397–406. doi: 10.1159/000244192 CrossRefGoogle Scholar
  231. Schaal, B., Marlier, L., & Soussignan, R. (1998). Olfactory function in the human fetus: Evidence from selective neonatal responsiveness to the odor of amniotic fluid. Behavioral Neuroscience, 112(6), 1438–1449. doi: 10.1037/0735-7044.112.6.1438 PubMedCrossRefGoogle Scholar
  232. Schaal, B., Marlier, L., & Soussignan, R. (2000). Human foetuses learn odours from their pregnant mother’s diet. Chemical Senses, 25(6), 729–737. doi: 10.1093/chemse/25.6.729 PubMedCrossRefGoogle Scholar
  233. Scher, M. S., Ludington-Hoe, S., Kaffashi, F., Johnson, M. W., Holditch-Davis, D., & Loparo, K. A. (2009). Neurophysiologic assessment of brain maturation after an 8-week trial of skin-to-skin contact on preterm infants. Clinical Neurophysiology, 120(10), 1812–1818. doi: 10.1016/j.clinph.2009.08.004 PubMedPubMedCentralCrossRefGoogle Scholar
  234. Schleidt, M., & Genzel, C. (1990). The significance of mother’s perfume for infants in the first weeks of their life. Ethology and Sociobiology, 11(3), 145–154. doi: 10.1016/0162-3095(90)90007-S CrossRefGoogle Scholar
  235. Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences, 105(2), 809–813. doi: 10.1073/pnas.0707021105 CrossRefGoogle Scholar
  236. Sininger, Y. S., Abdala, C., & Cone-Wesson, B. (1997). Auditory threshold sensitivity of the human neonate as measured by the auditory brainstem response. Hearing Research, 104(1/2), 27–38. doi: 10.1016/S0378-5955(96)00178-5 PubMedCrossRefGoogle Scholar
  237. Sizun, J., Ansquer, H., Browne, J. V., Tordjman, S., & Morin, J.-F. (2002). Developmental care decreases physiologic and behavioral pain expression in preterm neonates. The Journal of Pain, 3(6), 446–450. doi: 10.1054/jpai.2002.128066 PubMedCrossRefGoogle Scholar
  238. Slater, R., Cantarella, A., Gallella, S., Worley, A., Boyd, S., Meek, J., & Fitzgerald, M. (2006). Cortical pain responses in human infants. The Journal of Neuroscience, 26(14), 3662–3666. doi: 10.1523/JNEUROSCI.0348-06.2006 PubMedCrossRefGoogle Scholar
  239. Slater, R., Cantarella, A., Yoxen, J., Patten, D., Potts, H., Meek, J., & Fitzgerald, M. (2009). Latency to facial expression change following noxious stimulation in infants is dependent on postmenstrual age. Pain, 146(1/2), 177–182. doi: 10.1016/j.pain.2009.07.022 PubMedCrossRefGoogle Scholar
  240. Slater, R., Cornelissen, L., Fabrizi, L., Patten, D., Yoxen, J., Worley, A., … Fitzgerald, M. (2010). Oral sucrose as an analgesic drug for procedural pain in newborn infants: A randomised controlled trial. The Lancet, 376(9748), 1225–1232. doi: 10.1016/S0140-6736(10)61303-7
  241. Slater, A., Morison, V., Town, C., & Rose, D. (1985). Movement perception and identity constancy in the new-born baby. British Journal of Developmental Psychology, 3(3), 211–220. doi: 10.1111/j.2044-835X.1985.tb00974.x CrossRefGoogle Scholar
  242. Slater, A., Von der Schulenburg, C., Brown, E., Badenoch, M., Butterworth, G., Parsons, S., & Samuels, C. (1998). Newborn infants prefer attractive faces. Infant Behavior and Development, 21(2), 345–354. doi: 10.1016/S0163-6383(98)90011-X CrossRefGoogle Scholar
  243. Sleigh, M. J., & Lickliter, R. (1995). Augmented prenatal visual stimulation alters postnatal auditory and visual responsiveness in bobwhite quail chicks. Developmental Psychobiology, 28(7), 353–366. doi: 10.1002/dev.420280702 PubMedCrossRefGoogle Scholar
  244. Smyth, C. N. (1965). Exploratory methods for testing the integrity of the foetus and neonate. International Journal of Obstetrics & Gynaecology, 72(6), 920–925. doi: 10.1111/j.1471-0528.1965.tb01513.x CrossRefGoogle Scholar
  245. Soussignan, R., Schaal, B., Marlier, L., & Jiang, T. (1997). Facial and autonomic responses to biological and artificial olfactory stimuli in human neonates: Re-examining early hedonic discrimination of odors. Physiology & Behavior, 62(4), 745–758. doi: 10.1016/S0031-9384(97)00187-X CrossRefGoogle Scholar
  246. Starr, A., Amlie, R. N., Martin, W. H., & Sanders, S. (1977). Development of auditory function in newborn infants revealed by auditory brainstem potentials. Pediatrics, 60(6), 831–839.PubMedGoogle Scholar
  247. Steiner, J. E. (1979). Human facial expressions in response to taste and smell stimulation. Advances in Child Development and Behavior, 13, 257–295.PubMedCrossRefGoogle Scholar
  248. Steiner, J. E., Glaser, D., Hawilo, M. E., & Berridge, K. C. (2001). Comparative expression of hedonic impact: Affective reactions to taste by human infants and other primates. Neuroscience and Biobehavioral Reviews, 25(1), 53–74. doi: 10.1037/0735-7044.112.6.1438 PubMedCrossRefGoogle Scholar
  249. Stevens, B. J., Johnston, C. C., & Horton, L. (1994). Factors that influence the behavioral pain responses of premature infants. Pain, 59(1), 101–109. doi: 10.1016/0304-3959(94)90053-1 PubMedCrossRefGoogle Scholar
  250. Streri, A., & Gentaz, E. (2004). Cross-modal recognition of shape from hand to eyes and handedness in human newborns. Neuropsychologia, 42(10), 1365–1369. doi: 10.1016/j.neuropsychologia.2004.02.012 PubMedCrossRefGoogle Scholar
  251. Streri, A., Lhote, M., & Dutilleul, S. (2000). Haptic perception in newborns. Developmental Science, 3(3), 319–327. doi: 10.1111/1467-7687.00126 CrossRefGoogle Scholar
  252. Sugita, Y. (2008). Face perception in monkeys reared with no exposure to faces. Proceedings of the National Academy of Sciences, 105(1), 394–398. doi: 10.1073/pnas.0706079105 CrossRefGoogle Scholar
  253. Takahashi, Y., Tamakoshi, K., Matsushima, M., & Kawabe, T. (2011). Comparison of salivary cortisol, heart rate, and oxygen saturation between early skin-to-skin contact with different initiation and duration times in healthy, full-term infants. Early Human Development, 87(3), 151–157. doi: 10.1016/j.earlhumdev.2010.11.012 PubMedCrossRefGoogle Scholar
  254. Tallet, C., Rakotomahandry, M., Guérin, C., Lemasson, A., & Hausberger, M. (2016). Postnatal auditory preferences in piglets differ according to maternal emotional experience with the same sounds during gestation. Scientific Reports, 6. doi: 10.1038/srep37238
  255. Tatzer, E., Schubert, M. T., Timischl, W., & Simbruner, G. (1985). Discrimination of taste and preference for sweet in premature babies. Early Human Development, 12(1), 23–30. doi: 10.1016/0378-3782(85)90133-1 PubMedCrossRefGoogle Scholar
  256. Taylor, M. J., Menzies, R., MacMillan, L. J., & Whyte, H. E. (1987). VEP’s in normal full-term and premature neonates: Longitudinal versus cross-sectional data. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 68(1), 20–27. doi: 10.1016/0168-5597(87)90066-9 CrossRefGoogle Scholar
  257. Thordstein, M., Löfgren, N., Flisberg, A., Lindecrantz, K., & Kjellmer, I. (2006). Sex differences in electrocortical activity in human neonates. Neuroreport, 17(11), 1165–1168. doi: 10.1097/01.wnr.0000227978.98389.43 PubMedCrossRefGoogle Scholar
  258. Tristão, R. M., Garcia, N. V. M., de Jesus, J. A. L., & Tomaz, C. (2013). COMFORT behaviour scale and skin conductance activity: What are they really measuring? Acta Paediatrica, 102(9), e402–e406. doi: 10.1111/apa.12325 PubMedCrossRefGoogle Scholar
  259. Turkewitz, G., Birch, H. G., Moreau, T., Levy, L., & Cornwell, A. C. (1966). Effect of intensity of auditory stimulation on directional eye movements in the human neonate. Animal Behaviour, 14(1), 93–101. doi: 10.1016/S0003-3472(66)80016-7 PubMedCrossRefGoogle Scholar
  260. Turkewitz, G., & Kenny, P. A. (1982). Limitations on input as a basis for neural organization and perceptual development: A preliminary theoretical statement. Developmental Psychobiology, 15(4), 357–368. doi: 10.1002/dev.420150408 PubMedCrossRefGoogle Scholar
  261. Vallortigara, G. (2012). Aristotle and the chicken: Animacy and the origins of beliefs. In A. Fasolo (Ed.), The theory of evolution and its impact (pp. 189–199). Milano, Italy: Springer Milan.CrossRefGoogle Scholar
  262. Vallortigara, G., Regolin, L., & Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion patterns. PLoS Biology, 3(7), e208. doi: 10.1371/journal.pbio.0030208 PubMedPubMedCentralCrossRefGoogle Scholar
  263. Ververs, I. A. P., de Vries, J. I. P., van Geijn, H. P., & Hopkins, B. (1994). Prenatal head position from 12–38 weeks: I. Developmental aspects. Early Human Development, 39(2), 83–91. doi: 10.1016/0378-3782(94)90157-0 PubMedCrossRefGoogle Scholar
  264. Visser, G. H. A., Mulder, H. H., Wit, H. P., Mulder, E. J. H., & Prechtl, H. F. R. (1989). Vibro-acoustic stimulation of the human fetus: Effect on behavioural state organization. Early Human Development, 19(4), 285–296. doi: 10.1016/0378-3782(89)90063-7 PubMedCrossRefGoogle Scholar
  265. Vistamehr, S., & Tian, N. (2004). Light deprivation suppresses the light response of inner retina in both young and adult mouse. Visual Neuroscience, 21(01), 23–37. doi: 10.1017/S0952523804041033 PubMedCrossRefGoogle Scholar
  266. Walker, D., Grimwade, J., & Wood, C. (1973). The effects of pressure on fetal heart rate. Obstetrics & Gynecology, 41(3), 351–354.Google Scholar
  267. Weinacht, S., Kind, C., Mönting, J. S., & Gottlob, I. (1999). Visual development in preterm and full-term infants: A prospective masked study. Investigative Ophthalmology & Visual Science, 40(2), 346–353.Google Scholar
  268. Weinert, D., Sitka, U., Minors, D., Menna-Barreto, L., & Waterhouse, J. (1997). Twenty-four-hour and ultradian rhythmicities in healthy full-term neonates: Exogenous and endogenous influences. Biological Rhythm Research, 28(4), 441–452. doi: 10.1076/brhm.28.4.441.13119 CrossRefGoogle Scholar
  269. White, R. D. (2011a). Designing environments for developmental care. Clinics in Perinatology, 38(4), 745–749. doi: 10.1016/j.clp.2011.08.012 PubMedCrossRefGoogle Scholar
  270. White, R. D. (2011b). The newborn intensive care unit environment of care: How we got here, where we’re headed, and why. Seminars in Perinatology, 35(1), 2–7. doi: 10.1053/j.semperi.2010.10.002 PubMedCrossRefGoogle Scholar
  271. White, C. P., & Cooke, R. W. I. (1989). Maturation of the cortical evoked response to posterior-nerve stimulation in the preterm neonate. Developmental Medicine & Child Neurology, 31(5), 657–664. doi: 10.1111/j.1469-8749.1989.tb04052.x CrossRefGoogle Scholar
  272. Witt, M., & Reutter, K. (1997). Scanning electron microscopical studies of developing gustatory papillae in humans. Chemical Senses, 22(6), 601–612. doi: 10.1093/chemse/22.6.601 PubMedCrossRefGoogle Scholar
  273. Witt, M., & Reutter, K. (1998). Innervation of developing human taste buds. An immunohistochemical study. Histochemistry and Cell Biology, 109(3), 281–291. doi: 10.1007/s004180050228 PubMedCrossRefGoogle Scholar
  274. Woodward, A., Phillips, A., & Spelke, E. S. (1993). Infants’ expectations about the motions of inanimate vs. animate objects. Proceedings of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.Google Scholar
  275. Zimmer, E. Z., Divon, M. Y., Vilensky, A., Sarna, Z., Peretz, B. A., & Paldi, E. (1982). Maternal exposure to music and fetal activity. European Journal of Obstetrics & Gynecology and Reproductive Biology, 13(4), 209–213. doi: 10.1016/0028-2243(82)90101-0 CrossRefGoogle Scholar
  276. Zimmer, E. Z., Goldstein, I., & Alglay, S. (1988). Simultaneous recording of fetal breathing movements and body movements in twin pregnancy. Journal of Perinatal Medicine, 16(2), 109–111. doi: 10.1515/jpme.1988.16.2.109 PubMedCrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Vanessa André
    • 1
  • Séverine Henry
    • 1
  • Alban Lemasson
    • 1
  • Martine Hausberger
    • 2
  • Virginie Durier
    • 2
  1. 1.Université de Rennes 1, Ethologie Animale et Humaine, EthoS, UMR 6552, CNRS, Université Caen NormandieRennesFrance
  2. 2.CNRS, Ethologie Animale et Humaine, EthoS, UMR 6552, Université de Rennes 1, Université de Caen NormandieRennesFrance

Personalised recommendations