Athanasopoulos, G., & Moran, N. (2013). Cross-cultural representations of musical shapes. Empirical Musicology Review, 8(3–4), 185–199.
Google Scholar
Beijer, L. J., Rietveld, A. C. M., Hoskam, V., Geurts, A. C. H., & de Swart, B. J. M. (2010a). Evaluating the feasibility and the potential efficacy of e-learning-based speech therapy (EST) as a web application for speech training in dysarthric patients with Parkinson’s disease: a case study. Telemedicine Journal and E-Health, 16(6), 732–738. doi:10.1089/tmj.2009.0183
Article
PubMed
Google Scholar
Beijer, L. J., Rietveld, A. C. M., van Beers, M. M. A., Slangen, R. M. L., van den Heuvel, H., de Swart, B. J. M., & Geurts, A. C. H. (2010b). E-learning-based speech therapy: a web application for speech training. Telemedicine Journal and E-Health, 16(2), 177–180. doi:10.1089/tmj.2009.0104
Article
PubMed
Google Scholar
Beijer, L. J., Rietveld, A. C. M., Ruiter, M. B., & Geurts, A. C. H. (2014). Preparing an E-learning-based Speech Therapy (EST) efficacy study: identifying suitable outcome measures to detect within subject changes of speech intelligibility in dysarthric speakers. Clinical Linguistics & Phonetics, 28(12), 927–950. doi:10.3109/02699206.2014.936627
Article
Google Scholar
Beijer, L. J., Rietveld, A. C. M., & van Stiphout, A. J. L. (2011). Auditory discrimination as a condition for E-learning based Speech Therapy: a proposal for an Auditory Discrimination Test (ADT) for adult dysarthric speakers. Journal of Communication Disorders, 44, 701–718. doi:10.1016/j.jcomdis.2011.05.002
Article
PubMed
Google Scholar
Boersma, P., & Weenink, D. (2005). Praat: doing phonetics by computer (Version 4.3.01) [Computer program]. Accessed online: http://www.praat.org/
Bot de, K. (1983). Visual feedback of intonation I: Effectiveness and induced practice behavior. Language and Speech, 26, 331–350.
Brandmeyer, A., Timmers, R., Sadakata, M., & Desain, P. (2011). Learning expressive percussion performance under different visual feedback conditions. Psychological Research, 75(2), 107–121. doi:10.1007/s00426-010-0291-6
Article
PubMed
PubMed Central
Google Scholar
Burger, B., Thompson, M. R., Luck, G., Saarikallio, S., & Toiviainen, P. (2013). Influences of rhythm- and timbre-related musical features on characteristics of music-induced movement. Frontiers in Psychology, 4, 183. doi:10.3389/fpsyg.2013.00183
Article
PubMed
PubMed Central
Google Scholar
Demenko, G., Wagner, A., & Cylwik, N. (2010). The use of speech technology in foreign language pronunciations training. Archives of Acoustics, 35(3), 309–329. doi:10.2478/v10168-010-0027-z
Article
Google Scholar
Dixon, S. (2007). Evaluation of the audio beat tracking system BeatRoot. Journal of New Music Research, 36, 39–50. doi:10.1080/09298210701653310
Article
Google Scholar
Dolscheid, S., Shayan, S., Majid, A., & Casasanto, D. (2013). The thickness of musical pitch: psychophysical evidence for linguistic relativity. Psychological Science, 24(5), 613–621. doi:10.1177/0956797612457374
Article
PubMed
Google Scholar
Eitan, Z., & Granot, R. Y. (2006). How music moves: musical parameters and listeners’ images of motion. Music Perception, 23, 221–247. doi:10.1525/mp.2006.23.3.221
Article
Google Scholar
Eitan, Z., & Timmers, R. (2010). Beethoven’s last piano sonata and those who follow crocodiles: cross-domain mappings of auditory pitch in a musical context. Cognition, 114, 405–422. doi:10.1016/j.cognition.2009.10.013
Article
PubMed
Google Scholar
Gallace, A., & Spence, C. (2006). Multisensory synesthetic interactions in the speeded classification of visual size. Perception & Psychophysics, 68, 1191–1203.
Article
Google Scholar
Ho, A. K., Bradshaw, J. L., & Iansek, R. (2000). Volume perception in Parkinsonian speech. Movement Disorders, 15(6), 1125–1131. doi:10.1002/1531-8257(200011)15:6<1125::AID-MDS1010>3.0.CO;2-R
Article
PubMed
Google Scholar
Hoppe, D., Sadakata, M., & Desain, P. (2006). Development of real-time visual feedback assistance in singing training: a review. Journal of Computer Assisted Learning, 22(4), 308–316. doi:10.1111/j.1365-2729.2006.00178.x
Article
Google Scholar
Ishihara, M., Keller, P. E., Rossetti, Y., & Prinz, W. (2008). Horizontal spatial representations of time: evidence for the STEARC effect. Cortex, 44, 454–461.
Article
PubMed
Google Scholar
Kim, Y., Kent, R. D., & Weismer, G. (2011). An acoustic study of the relationships among neurologic disease, dysarthria type and severity of dysarthria. Journal of Speech, Language and Hearing Research, 54, 417–429.
Article
Google Scholar
Küssner, M. B., & Leech-Wilkinson, D. (2014). Investigating the influence of musical training on cross-modal correspondences and sensorimotor skills in a real-time drawing paradigm. Psychology of Music, 42(3), 448–469. doi:10.1177/0305735613482022
Article
Google Scholar
Küssner, M. B., Tidhar, D., Prior, H. M. & Leech-Wilkinson, D. (2014). Musicians are more consistent: gestural cross-modal mappings of pitch, loudness and tempo in real-time. Frontiers in Psychology, 5, Art. 789. doi: 10.3389/fpsyg.2014.00789
Lipscomb, S. D., & Kim, E. M. (2004). Perceived match between visual parameters and auditory correlates: an experimental multimedia investigation. In: Lipscomb, S., Ashley, R., Gjerdingen, R. & Webster, P. (Eds.), Proceedings of the 8th International Conference on Music Perception and Cognition (ICMPC8), pp. 72–75. Evanston, IL, 3–8 August, 2004. Adelaide: Causal Productions.
McLeod, P. (2008). Fast, accurate pitch detection tools for music analysis. Unpublished PhD thesis. Department of Computer Science, University of Otago, 2008. Accessed 7 March 2012 at http://miracle.otago.ac.nz/tartini/papers.html
Nijs, L., & Leman, M. (2014). Interactive technologies in the instrumental music classroom: a longitudinal study with the Music Paint Machine. Computers & Education, 73, 40–59. doi:10.1016/j.compedu.2013.11.008
Article
Google Scholar
Plomp, R., & Mimpen, A. M. (1979). Improving the reliability of testing the speech reception threshold for sentences. Audiology, 18, 43–52. doi:10.3109/00206097909072618
Article
PubMed
Google Scholar
Rossiter, D., Howard, D. M., & DeCosta, M. (1996). Voice development under training with and without the influence of real-time visually presented biofeedback. Journal of Acoustical Society of America, 99, 3253–3256. doi:10.1121/1.414872
Article
Google Scholar
Rusconi, E., Kwan, B., Giordano, B. L., Umiltá, C., & Butterworth, B. (2006). Spatial representation of pitch height: the SMARC effect. Cognition, 99, 113–129. doi:10.1016/j.cognition.2005.01.004
Article
PubMed
Google Scholar
Sadakata, M., Hoppe, D., Brandmeyer, A., Timmers, R., & Desain, P. (2008). Real-time visual feedback for learning to perform short rhythms with expressive variations in timing and loudness. Journal of New Music Research, 37(3), 207–220. doi:10.1080/09298210802322401
Article
Google Scholar
Scheffé, H. (1952). An analysis of variance for paired comparisons. Journal of the American Statistical Association, 47(259), 381–400. doi:10.1080/01621459.1952.10501179
Google Scholar
Schmidt, R. A., & Lee, T. D. (2010). Motor control and learning: a behavioral emphasis (5th ed.). Champaign, IL: Human Kinetics.
Google Scholar
Spence, C. (2011). Crossmodal correspondences: a tutorial review. Attention Perception Psychophysics, 73, 971–995. doi:10.3758/s13414-010-0073-7
Article
Google Scholar
Stowell D., & Plumbley, M.D. (2007). Adaptive whitening for improved real-time audio onset detection. In: Proceedings of the International Computer Music Conference (ICMC’07). Vol 18. Denmark, August 2007.
Swart de, B. J., Willemse, S. C., Maassen, B. A., & Horstink, M. W. (2003). Improvement of voicing in patients with Parkinson’s disease by speech therapy. Neurology, 60(3), 498–500. doi:10.1212/01.WNL.0000044480.95458.56
Timmers, R., & Sadakata, M. (2014). Training expressive performance by means of visual feedback: existing and potential applications of performance measurement techniques. In D. Fabian, R. Timmers, & E. Schubert (Eds.), Expression in Music Performance. Oxford: Oxford University Press.
Google Scholar
Troche, J., Troche, M. S., Berkowitz, R., Grossman, M., & Reilly, J. (2012). Tone discrimination as a window into acoustic perceptual deficits in Parkinson’s disease. American Journal of Speech-Language Pathology, 21(3), 258–263. doi:10.1044/1058-0360
Article
PubMed
PubMed Central
Google Scholar
Walker, P., Bremner, J. G., Mason, U., Spring, J., Mattock, K., Slater, A., & Johnson, S. P. (2009). Preverbal infants’ sensitivity to synaesthetic cross-modality correspondences. Psychological Science, 21, 21–25. doi:10.1177/0956797609354734
Article
PubMed
Google Scholar
Walker, R. (1987). The effects of culture, environment, age and musical training on choices of visual metaphors for sound. Perception & Psychophysics, 42(5), 491–502.
Article
Google Scholar
Watanabe, A., Tomishige, S., & Nakatake, M. (2000). Speech visualization by integrating features for the hearing impaired. IEEE Transactions on Speech and Audio Processing, 8(4), 454–466. doi:10.1109/89.848226
Article
Google Scholar
Wilson, P. H., Lee, K., Callaghan, J., & Thorpe, C. W. (2008). Learning to sing in tune: does real-time visual feedback help? Journal of Interdisciplinary Music Studies, 2, 157–172.
Google Scholar