On the evolution of conscious attention

Abstract

This paper aims to clarify the relationship between consciousness and attention through theoretical considerations about evolution. Specifically, we will argue that the empirical findings on attention and the basic considerations concerning the evolution of the different forms of attention demonstrate that consciousness and attention must be dissociated regardless of which definition of these terms one uses. To the best of our knowledge, no extant view on the relationship between consciousness and attention has this advantage. Because of this characteristic, this paper presents a principled and neutral way to settle debates concerning the relationship between consciousness and attention, without falling into disputes about the meaning of these terms. A decisive conclusion of this approach is that extreme views on the relationship between consciousness and attention must be rejected, including identity and full dissociation views. There is an overlap between the two within conscious attention, but developing a full understanding of this mechanism requires further empirical investigations.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    Phenomenal consciousness is the subjective experience of “what it is like” to be in a certain mental state, as Nagel (1974) famously described.

  2. 2.

    The various levels of the consciousness and attention dissociation (CAD) are examined in detail in Montemayor & Haladjian (2014).

  3. 3.

    The individuation of visual objects is related to demonstrative thoughts and provides a solution to the “reference problem”, which is concerned with how an object can be tracked through space and time and be linked to a mental representation (Perry, 1997; Pylyshyn, 2001, 2003, 2007; Siegel, 2002). In this way, attention helps anchor mental representations in the world by providing links to higher-level representations (e.g., object representations in working memory).

  4. 4.

    See Pöppel (1988) on these findings, and Montemayor (2013) for discussions on the representational characteristics of the cross-modal simultaneity window.

  5. 5.

    Blindsight is a condition where damage to the visual cortex prevents the individual from being able to consciously perceive a visual stimulus, yet they are still able to act upon it (e.g., pick up an object) since the relevant information for the motor system can by-pass the visual cortex (Brogaard, 2012; Kentridge, 2012; Kentridge, Nijboer, & Heywood, 2008; Weiskrantz, 1996).

  6. 6.

    Dualist accounts tend to assume a metaphysical explanation of consciousness, which requires an account outside the physical world; even some interpretations of quantum mechanics seem to suggest some form of dualism (e.g., the von Neumann interpretation). Physicalist accounts require a physical (e.g., neural) basis to phenomenal conscious experience.

References

  1. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. doi:10.1111/j.0963-7214.2004.01502006.x

    PubMed  Google Scholar 

  2. Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19(4), 392–398. doi:10.1111/j.1467-9280.2008.02098.x

    PubMed Central  PubMed  Google Scholar 

  3. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. doi:10.1016/j.tics.2012.06.010

    PubMed Central  PubMed  Google Scholar 

  4. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126. doi:10.1016/S1364-6613(00)01593-X

    PubMed  Google Scholar 

  5. Baars, B. J. (1988). A Cognitive Theory of Consciousness. Cambridge: Cambridge University Press.

    Google Scholar 

  6. Baars, B. J. (1998). The functions of consciousness: Reply. Trends in Neurosciences, 21(5), 201. doi:10.1016/S0166-2236(98)01252-1

    Google Scholar 

  7. Baars, B. J. (2002). The conscious access hypothesis: Origins and recent evidence. Trends in Cognitive Sciences, 6(1), 47–52. doi:10.1016/S1364-6613(00)01819-2

    PubMed  Google Scholar 

  8. Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423. doi:10.1016/S1364-6613(00)01538-2

    PubMed  Google Scholar 

  9. Baddeley, A. D., & Della Sala, S. (1996). Working memory and executive control. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351(1346), 1397–1493. doi:10.1098/rstb.1996.0123

    PubMed  Google Scholar 

  10. Baddeley, A. D., & Weiskrantz, L. (Eds.). (1993). Attention: Selection, Awareness, and Control: A Tribute to Donald Broadbent. Oxford: Clarendon Press.

    Google Scholar 

  11. Batson, M. A., Beer, A. L., Seitz, A. R., & Watanabe, T. (2011). Spatial shifts of audio-visual interactions by perceptual learning are specific to the trained orientation and eye. Seeing and Perceiving, 24(6), 579–594. doi:10.1163/187847611X603738

    PubMed  Google Scholar 

  12. Baylis, G. C., & Driver, J. (1993). Visual attention and objects: Evidence for hierarchical coding of location. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 451–470. doi:10.1037/0096-1523.19.3.451

    PubMed  Google Scholar 

  13. Bayne, T. (2007). Conscious states and conscious creatures: Explanation in the scientific study of consciousness. Philosophical Perspectives, 21(1), 1–22. doi:10.1111/j.1520-8583.2007.00118.x

    Google Scholar 

  14. Beauchamp, M. S., Petit, L., Ellmore, T. M., Ingeholm, J., & Haxby, J. V. (2001). A parametric fMRI study of overt and covert shifts of visuospatial attention. NeuroImage, 14(2), 310–321. doi:10.1006/nimg.2001.0788

    PubMed  Google Scholar 

  15. Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 18(2), 227–247. doi:10.1017/S0140525X00038188

    Google Scholar 

  16. Brefczynski, J. A., & DeYoe, E. A. (1999). A physiological correlate of the 'spotlight' of visual attention. Nature Neuroscience, 2(4), 370–374. doi:10.1038/7280

    PubMed  Google Scholar 

  17. Brogaard, B. (2011). Are there unconscious perceptual processes? Consciousness and Cognition, 20(2), 449–463. doi:10.1016/j.concog.2010.10.002

    PubMed  Google Scholar 

  18. Brogaard, B. (2012). Non-visual consciousness and visual images in blindsight. Consciousness and Cognition, 21(1), 595–596. doi:10.1016/j.concog.2011.12.003

    PubMed  Google Scholar 

  19. Bruya, B. (2010). Effortless Attention: A New Perspective in the Cognitive Science of Attention and Action. Cambridge, MA: MIT Press.

    Google Scholar 

  20. Bundesen, C., Habekost, T., & Kyllingsbaek, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112(2), 291–328. doi:10.1037/0033-295X.112.2.291

    PubMed  Google Scholar 

  21. Burkell, J. A., & Pylyshyn, Z. W. (1997). Searching through subsets: A test of the visual indexing hypothesis. Spatial Vision, 11(2), 225–258. doi:10.1163/156856897X00203

    PubMed  Google Scholar 

  22. Burnham, B. R. (2007). Displaywide visual features associated with a search display's appearance can mediate attentional capture. Psychonomic Bulletin & Review, 14(3), 392–422. doi:10.3758/BF03194082

    Google Scholar 

  23. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525. doi:10.1016/j.visres.2011.04.012

    PubMed Central  PubMed  Google Scholar 

  24. Carruthers, P. (2000). Phenomenal Consciousness. Cambridge: Cambridge University Press.

    Google Scholar 

  25. Chalmers, D. J. (1996). The Conscious Mind: In Search of a Fundamental Theory. New York: Oxford University Press.

    Google Scholar 

  26. Chen, Z. (2012). Object-based attention: A tutorial review. Attention, Perception, & Psychophysics, 74(5), 784–802. doi:10.3758/s13414-012-0322-z

    Google Scholar 

  27. Chesney, D. L., & Haladjian, H. H. (2011). Evidence for a shared mechanism used in multiple-object tracking and subitizing. Attention, Perception, & Psychophysics, 73(8), 2457–2480. doi:10.3758/s13414-011-0204-9

    Google Scholar 

  28. Chou, W.-L., & Yeh, S.-L. (2012). Object-based attention occurs regardless of object awareness. Psychonomic Bulletin & Review, 19(2), 225–231. doi:10.3758/s13423-011-0207-5

    Google Scholar 

  29. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. doi:10.1017/S0140525X12000477

    PubMed  Google Scholar 

  30. Cohen, E. H., & Tong, F. (2013). Neural Mechanisms of Object-Based Attention. Cerebral Cortex. doi:10.1093/cercor/bht303

    Google Scholar 

  31. Cohen, M. A., Cavanagh, P., Chun, M. M., & Nakayama, K. (2012). The attentional requirements of consciousness. Trends in Cognitive Sciences, 16(8), 411–417. doi:10.1016/j.tics.2012.06.013

    PubMed  Google Scholar 

  32. Cosmides, L., & Tooby, J. (2013). Evolutionary psychology: New perspectives on cognition and motivation. Annual Review of Psychology, 64, 201–229. doi:10.1146/annurev.psych.121208.131628

    PubMed  Google Scholar 

  33. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. doi:10.1017/S0140525X01373922. discussion 114-185.

    PubMed  Google Scholar 

  34. Csikszentmihalyi, M. (1997). Finding Flow: The Psychology of Engagement with Everyday Life (1st ed.). New York: Basic Books.

    Google Scholar 

  35. de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2004). Neural correlates of attentional capture in visual search. Journal of Cognitive Neuroscience, 16(5), 751–759. doi:10.1162/089892904970762

    PubMed  Google Scholar 

  36. Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1–2), 1–37. doi:10.1016/S0010-0277(00)00123-2

    PubMed  Google Scholar 

  37. Dennett, D. C. (1969). Content and Consciousness. London: Routledge.

    Google Scholar 

  38. Dennett, D. C. (1991). Consciousness Explained (1st ed.). Boston, MA: Little, Brown and Co.

    Google Scholar 

  39. Dennett, D. C. (2005). Sweet Dreams: Philosophical Obstacles to a Science of Consciousness. Cambridge, MA: MIT Press.

    Google Scholar 

  40. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi:10.1146/annurev.ne.18.030195.001205

    PubMed  Google Scholar 

  41. Desmurget, M., Reilly, K. T., Richard, N., Szathmari, A., Mottolese, C., & Sirigu, A. (2009). Movement intention after parietal cortex stimulation in humans. Science, 324(5928), 811–813. doi:10.1126/science.1169896

    PubMed  Google Scholar 

  42. Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129(4), 481–507. doi:10.1037/0096-3445.129.4.481

    Google Scholar 

  43. Edelman, D. B., Baars, B. J., & Seth, A. K. (2005). Identifying hallmarks of consciousness in non-mammalian species. Consciousness and Cognition, 14(1), 169–187. doi:10.1016/j.concog.2004.09.001

    PubMed  Google Scholar 

  44. Eriksen, C. W., & Yeh, Y.-Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 583–597. doi:10.1037/0096-1523.11.5.583

    PubMed  Google Scholar 

  45. Feinberg, T. E., & Mallatt, J. (2013). The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Frontiers in Psychology, 4. doi: 10.3389/fpsyg.2013.00667

  46. Feldman, J. (2007). Formation of visual “objects” in the early computation of spatial relations. Perception & Psychophysics, 69(5), 816–827. doi:10.3758/BF03193781

    Google Scholar 

  47. Filevich, E., Vanneste, P., Brass, M., Fias, W., Haggard, P., & Kühn, S. (2013). Brain correlates of subjective freedom of choice. Consciousness and Cognition, 22(4), 1271–1284. doi:10.1016/j.concog.2013.08.011

    PubMed Central  PubMed  Google Scholar 

  48. Finlay, B. L., & Brodsky, P. B. (2006). Cortical evolution as the expression of a program for disproportionate growth and the proliferation of areas. In J. H. Kaas (Ed.), Evolution of Nervous Systems: A Comprehensive Reference (1st ed., Vol. 1, pp. 73–96). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  49. Fitch, W. T., Hauser, M. D., & Chomsky, N. (2005). The evolution of the language faculty: Clarifications and implications. Cognition, 97(2), 179–210. doi:10.1016/j.cognition.2005.02.005. discussion 211-125.

    PubMed  Google Scholar 

  50. Fodor, J. A. (1983). The Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press.

    Google Scholar 

  51. Fodor, J. A. (1998). Concepts: Where Cognitive Science Went Wrong. Oxford: Oxford University Press.

    Google Scholar 

  52. Gallistel, C. R. (1990a). The Organization of Learning. Cambridge, MA: MIT Press.

    Google Scholar 

  53. Gallistel, C. R. (1990b). Representations in animal cognition: An introduction. Cognition, 37(1–2), 1–22. doi:10.1016/0010-0277(90)90016-D

    PubMed  Google Scholar 

  54. Gazzaley, A., & Nobre, A. C. (2011). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135. doi:10.1016/j.tics.2011.11.014

    PubMed Central  PubMed  Google Scholar 

  55. Gegenfurtner, K. R. (2003). Cortical mechanisms of colour vision. Nature Reviews Neuroscience, 4(7), 563–572. doi:10.1038/nrn1138

    PubMed  Google Scholar 

  56. Geisler, W. S., Perry, J. S., Super, B. J., & Gallogly, D. P. (2001). Edge co-occurrence in natural images predicts contour grouping performance. Vision Research, 41(6), 711–724. doi:10.1016/S0042-6989(00)00277-7

    PubMed  Google Scholar 

  57. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B: Biological Sciences, 205(1161), 581–598. doi:10.2307/77447

    Google Scholar 

  58. Griffin, D. R., & Speck, G. B. (2004). New evidence of animal consciousness. Animal Cognition, 7(1), 5–18. doi:10.1007/s10071-003-0203-x

    PubMed  Google Scholar 

  59. Haladjian, H. H., Montemayor, C., & Pylyshyn, Z. W. (2008). Segregating targets and nontargets in depth eliminates inhibition of nontargets in Multiple Object Tracking. Visual Cognition, 16(1), 107–110. doi:10.1007/s10071-003-0203-x

    Google Scholar 

  60. Haladjian, H. H., & Pylyshyn, Z. W. (2011). Enumerating by pointing to locations: A new method for measuring the numerosity of visual object representations. Attention, Perception, & Psychophysics, 73(2), 303–308. doi:10.3758/s13414-010-0030-5

    Google Scholar 

  61. Hamker, F. H. (2005). The reentry hypothesis: The putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cerebral Cortex, 15(4), 431–447. doi:10.1093/cercor/bhh146

    PubMed  Google Scholar 

  62. Hollingworth, A., & Maxcey-Richard, A. M. (2013). Selective maintenance in visual working memory does not require sustained visual attention. Journal of Experimental Psychology: Human Perception and Performance, 39(4), 1047–1058. doi:10.1037/a0030238

    PubMed Central  PubMed  Google Scholar 

  63. Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8(11), 494–500. doi:10.1016/j.tics.2004.08.007

    PubMed  Google Scholar 

  64. Hommel, B. (2005). How much attention does an event file need? Journal of Experimental Psychology: Human Perception and Performance, 31(5), 1067–1082. doi:10.1037/0096-1523.31.5.1067

    PubMed  Google Scholar 

  65. Hommel, B. (2007). Feature integration across perception and action: Event files affect response choice. Psychological Research, 71(1), 42–63. doi:10.1007/s00426-005-0035-1

    PubMed  Google Scholar 

  66. Horowitz, T. S., Holcombe, A. O., Wolfe, J. M., Arsenio, H. C., & DiMase, J. S. (2004). Attentional pursuit is faster than attentional saccade. Journal of Vision, 4(7), 585–603. doi:10.1167/4.7.6

    PubMed  Google Scholar 

  67. Hubel, D. H. (1995). Eye, Brain, and Vision. New York: Scientific American Library.

    Google Scholar 

  68. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160, 106–154.

    PubMed Central  PubMed  Google Scholar 

  69. Humphrey, N. (2011). Soul Dust: The Magic of Consciousness. Princeton: Princeton University Press.

    Google Scholar 

  70. Johnson, J. S., Hollingworth, A., & Luck, S. J. (2008). The role of attention in the maintenance of feature bindings in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 34(1), 41–55. doi:10.1037/0096-1523.34.1.41

    PubMed Central  PubMed  Google Scholar 

  71. Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114(1), 3–28. doi:10.1037/0033-2909.114.1.3

    PubMed  Google Scholar 

  72. Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2), 175–219. doi:10.1016/0010-0285(92)90007-O

    PubMed  Google Scholar 

  73. Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341. doi:10.1146/annurev.neuro.23.1.315

    PubMed  Google Scholar 

  74. Kentridge, R. W. (2012). Blindsight: Spontaneous scanning of complex scenes. Current Biology, 22(15), R605–R606. doi:10.1016/j.cub.2012.06.011

    PubMed  Google Scholar 

  75. Kentridge, R. W., Nijboer, T. C. W., & Heywood, C. A. (2008). Attended but unseen: Visual attention is not sufficient for visual awareness. Neuropsychologia, 46(3), 864–869. doi:10.1016/j.neuropsychologia.2007.11.036

    PubMed  Google Scholar 

  76. Koch, C. (2004). The Quest for Consciousness: A Neurobiological Approach. Denver, CO: Roberts & Company Publishers.

    Google Scholar 

  77. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227. doi:10.1007/978-94-009-3833-5_5

    PubMed  Google Scholar 

  78. Kovács, I. (1996). Gestalten of today: Early processing of visual contours and surfaces. Behavioural Brain Research, 82(1), 1–11. doi:10.1016/S0166-4328(97)81103-5

    PubMed  Google Scholar 

  79. Kühn, S., & Brass, M. (2009). Retrospective construction of the judgement of free choice. Consciousness and Cognition, 18(1), 12–21. doi:10.1016/j.concog.2008.09.007

    PubMed  Google Scholar 

  80. Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago: University of Chicago Press.

    Google Scholar 

  81. Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends in Cognitive Sciences, 7(1), 12–18. doi:10.1016/S1364-6613(02)00013-X

    PubMed  Google Scholar 

  82. Lamme, V. A. F. (2006). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10(11), 494–501. doi:10.1016/j.tics.2006.09.001

    PubMed  Google Scholar 

  83. Lovibond, P. F., Liu, J. C. J., Weidemann, G., & Mitchell, C. J. (2011). Awareness is necessary for differential trace and delay eyeblink conditioning in humans. Biological Psychology, 87(3), 393–400. doi:10.1016/j.biopsycho.2011.05.002

    PubMed  Google Scholar 

  84. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77(1), 24–42.

    PubMed  Google Scholar 

  85. Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32(1), 4–18. doi:10.1146/annurev.ne.18.030195.001205

    PubMed  Google Scholar 

  86. Marr, D. (1980). Visual information processing: The structure and creation of visual representations. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 290(1038), 199–218. doi:10.1098/rstb.1980.0091

    PubMed  Google Scholar 

  87. Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317–322. doi:10.1016/j.tins.2006.04.001

    PubMed  Google Scholar 

  88. McDowell, J. H. (1994). Mind and World. Cambridge, MA: Harvard University Press.

    Google Scholar 

  89. Melcher, D., & Vidnyanszky, Z. (2006). Subthreshold features of visual objects: Unseen but not unbound. Vision Research, 46(12), 1863–1867. doi:10.1016/j.visres.2005.11.021

    PubMed  Google Scholar 

  90. Merker, B. (2005). The liabilities of mobility: A selection pressure for the transition to consciousness in animal evolution. Consciousness and Cognition, 14(1), 89–114. doi:10.1016/S1053-8100(03)00002-3

    PubMed  Google Scholar 

  91. Meuwese, J. D. I., Post, R. A. G., Scholte, H. S., & Lamme, V. A. F. (2013). Does perceptual learning require consciousness or attention? Journal of Cognitive Neuroscience, 25(10), 1579–1596. doi:10.1162/jocn_a_00424

    PubMed  Google Scholar 

  92. Milner, A. D., & Goodale, M. A. (1995). The Visual Brain in Action (1st ed.). Oxford: Oxford University Press.

    Google Scholar 

  93. Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774–785. doi:10.1016/j.neuropsychologia.2007.10.005

    PubMed  Google Scholar 

  94. Mitchell, K. J., & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135(4), 638–677. doi:10.1037/a0015849

    PubMed Central  PubMed  Google Scholar 

  95. Mitroff, S. R., Scholl, B. J., & Wynn, K. (2005). The relationship between object files and conscious perception. Cognition, 96(1), 67–92. doi:10.1167/3.9.338

    PubMed  Google Scholar 

  96. Montemayor, C. (2013). Minding Time: A Philosophical and Theoretical Approach to the Psychology of Time. Boston: Brill.

    Google Scholar 

  97. Montemayor, C., & Haladjian, H. H. (2014). Consciousness, Attention, and Conscious Attention. Cambridge, MA: MIT Press.

    Google Scholar 

  98. Mudrik, L., Faivre, N., & Koch, C. (2014). Information integration without awareness. Trends in Cognitive Sciences, 18(9), 488–496. doi: 10.1016/j.tics.2014.04.009

  99. Nagel, T. (1974). What is it like to be a bat? Philosophical Review, 83(4), 435–450.

    Google Scholar 

  100. Newsome, W. T., & Paré, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). The Journal of Neuroscience, 8(6), 2201–2211.

    PubMed  Google Scholar 

  101. Nichols, S., & Grantham, T. (2000). Adaptive complexity and phenomenal consciousness. Philosophy of Science, 67(4), 648–670.

    Google Scholar 

  102. Norman, L. J., Heywood, C. A., & Kentridge, R. W. (2013). Object-based attention without awareness. Psychological Science, 24(6), 836–843. doi:10.1177/0956797612461449

    PubMed  Google Scholar 

  103. O'Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401(6753), 584–587. doi:10.1038/44134

    PubMed  Google Scholar 

  104. Oberauer, K., & Hein, L. (2012). Attention to information in working memory. Current Directions in Psychological Science, 21(3), 164–169. doi:10.1177/0963721412444727

    Google Scholar 

  105. Olivers, C. N. L. (2008). Interactions between visual working memory and visual attention. Frontiers in Bioscience, 13, 1182–1191. doi:10.2741/2754

    PubMed  Google Scholar 

  106. Perry, J. (1997). Indexicals and demonstratives. In R. Hale & C. Wright (Eds.), Companion to the Philosophy of Language. Oxford: Blackwell.

    Google Scholar 

  107. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89. doi:10.1146/annurev-neuro-062111-150525

    PubMed Central  PubMed  Google Scholar 

  108. Peterson, M. S., Kramer, A. F., & Irwin, D. E. (2004). Covert shifts of attention precede involuntary eye movements. Perception & Psychophysics, 66(3), 398–405. doi:10.3758/BF03194888

    Google Scholar 

  109. Polger, T., & Flanagan, O. (2002). Consciousness, adaptation and epiphenomenalism. In J. H. Fetzer (Ed.), Consciousness Evolving (pp. 21–41). Amsterdam: John Benjamins Pub.

    Google Scholar 

  110. Pollen, D. A. (2003). Explicit neural representations, recursive neural networks and conscious visual perception. Cerebral Cortex, 13(8), 807–814. doi:10.1093/cercor/13.8.807

    PubMed  Google Scholar 

  111. Pöppel, E. (1988). Mindworks: Time and Conscious Experience (1st ed.). Boston: Harcourt Brace Jovanovich.

    Google Scholar 

  112. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.

    PubMed  Google Scholar 

  113. Posner, M. I. (1992). Attention as a cognitive and neural system. Current Directions in Psychological Science, 1(1), 11–14. doi:10.1111/1467-8721.ep10767759

    Google Scholar 

  114. Posner, M. I., Cohen, Y., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 298(1089), 187–198. doi:10.1098/rstb.1982.0081

    PubMed  Google Scholar 

  115. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology, 109(2), 160–174. doi:10.1037/0096-3445.109.2.160

    PubMed  Google Scholar 

  116. Prinz, J. J. (2012). The Conscious Brain: How Attention Engenders Experience. New York: Oxford University Press.

    Google Scholar 

  117. Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32(1), 65–97. doi:10.1016/0010-0277(89)90014-0

    PubMed  Google Scholar 

  118. Pylyshyn, Z. W. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22(3), 341–365. discussion 366-423.

    PubMed  Google Scholar 

  119. Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80(1–2), 127–158. doi:10.1016/S0010-0277(00)00156-6

    PubMed  Google Scholar 

  120. Pylyshyn, Z. W. (2003). Seeing and Visualizing: It's Not What You Think. Cambridge, MA: MIT Press.

    Google Scholar 

  121. Pylyshyn, Z. W. (2006). Some puzzling findings in multiple object tracking (MOT): II. Inhibition of moving nontargets. Visual Cognition, 14(2), 175–198. doi:10.1080/13506280544000200

    Google Scholar 

  122. Pylyshyn, Z. W. (2007). Things and Places: How the Mind Connects with the World. Cambridge, MA: MIT Press.

    Google Scholar 

  123. Pylyshyn, Z. W., Haladjian, H. H., King, C. E., & Reilly, J. E. (2008). Selective nontarget inhibition in Multiple Object Tracking. Visual Cognition, 16(8), 1011–1021. doi:10.1080/13506280802247486

    Google Scholar 

  124. Rensink, R. A. (2014). A function-centered taxonomy of visual attention. In P. Coates & S. Coleman (Eds.), Phenomenal Qualities: Sense, Perception, and Consciousness. Oxford: Oxford University Press.

    Google Scholar 

  125. Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395(6700), 376–381. doi:10.1038/26475

    PubMed  Google Scholar 

  126. Rosenthal, D. M. (2008). Consciousness and its function. Neuropsychologia, 46(3), 829–840. doi:10.1016/j.neuropsychologia.2007.11.012

    PubMed  Google Scholar 

  127. Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80(1–2), 1–46. doi:10.1016/S0010-0277(00)00152-9

    PubMed  Google Scholar 

  128. Scholl, B. J., Pylyshyn, Z. W., & Feldman, J. (2001). What is a visual object? Evidence from target merging in multiple object tracking. Cognition, 80(1–2), 159–177. doi:10.1016/S0010-0277(00)00157-8

    PubMed  Google Scholar 

  129. Seth, A. K., & Baars, B. J. (2005). Neural Darwinism and consciousness. Consciousness and Cognition, 14(1), 140–168. doi:10.1016/j.concog.2004.08.008

    PubMed  Google Scholar 

  130. Seth, A. K., Baars, B. J., & Edelman, D. B. (2005). Criteria for consciousness in humans and other mammals. Consciousness and Cognition, 14(1), 119–139. doi:10.1016/j.concog.2004.08.006

    PubMed  Google Scholar 

  131. Seth, A. K., Dienes, Z., Cleeremans, A., Overgaard, M., & Pessoa, L. (2008). Measuring consciousness: Relating behavioural and neurophysiological approaches. Trends in Cognitive Sciences, 12(8), 314–321. doi:10.1016/j.tics.2008.04.008

    PubMed Central  PubMed  Google Scholar 

  132. Siegel, S. (2002). The role of perception in demonstrative reference. Philosophers’ Imprint, 2(1), 1–21.

    Google Scholar 

  133. Smith, J. M., & Szathmáry, E. (1995). The Major Transitions in Evolution. New York: W.H. Freeman Spektrum.

    Google Scholar 

  134. Spelke, E. (1994). Initial knowledge: Six suggestions. Cognition, 50(1–3), 431–445. doi:10.1016/0010-0277(94)90039-6

    PubMed  Google Scholar 

  135. Spencer, H. (1855). The Principles of Psychology (3rd edition (1987th ed.). New York: D. Appleton & Company.

    Google Scholar 

  136. Stalnaker, R. (1984). Inquiry. Cambridge, MA: MIT Press.

    Google Scholar 

  137. Striedter, G. F. (2006). Precis of principles of brain evolution. Behavioral and Brain Sciences, 29, 1–36. doi:10.1017/S0140525X06009010

    PubMed  Google Scholar 

  138. Tallon-Baudry, C. (2012). On the neural mechanisms subserving consciousness and attention. Frontiers in Psychology, 2, 397. doi:10.3389/fpsyg.2011.00397

    PubMed Central  PubMed  Google Scholar 

  139. Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14(9), 400–410. doi:10.1016/j.tics.2010.06.008

    PubMed Central  PubMed  Google Scholar 

  140. Tanskanen, T., Saarinen, J., Parkkonen, L., & Hari, R. (2008). From local to global: Cortical dynamics of contour integration. Journal of Vision, 8(7), 15 11–12. doi:10.1167/8.7.15

    Google Scholar 

  141. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606. doi:10.3758/BF03211656

    Google Scholar 

  142. Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99. doi:10.1016/j.actpsy.2010.02.006

    PubMed  Google Scholar 

  143. Theeuwes, J., Van der Stigchel, S., & Olivers, C. N. L. (2006). Spatial working memory and inhibition of return. Psychonomic Bulletin & Review, 13(4), 608–613. doi:10.3758/BF03193970

    Google Scholar 

  144. Thompson, K. G., Biscoe, K. L., & Sato, T. R. (2005). Neuronal basis of covert spatial attention in the frontal eye field. The Journal of Neuroscience, 25(41), 9479–9487. doi:10.1523/JNEUROSCI.0741-05.2005

    PubMed Central  PubMed  Google Scholar 

  145. Tomasello, M. (1999). The Cultural Origins of Human Cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  146. Tononi, G. (2008). Consciousness as integrated information: A provisional manifesto. The Biological Bulletin, 215(3), 216–242.

    PubMed  Google Scholar 

  147. Tononi, G. (2012). Integrated information theory of consciousness: An updated account. Archives Italiennes de Biologie, 150(2–3), 56–90. doi:10.4449/aib.v149i5.1388

    PubMed  Google Scholar 

  148. Tononi, G., & Koch, C. (2008). The neural correlates of consciousness: An update. Annals of the New York Academy of Sciences, 1124, 239–261. doi:10.1196/annals.1440.004

    PubMed  Google Scholar 

  149. Tooby, J., & Cosmides, L. (1995). Mapping the evolved functional organization of the mind and brain. In M. S. Gazzaniga & E. Bizzi (Eds.), The Cognitive Neurosciences (pp. 1185–1197). Cambridge, MA: MIT Press.

    Google Scholar 

  150. Tootell, R. B., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., …. Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. The Journal of Neuroscience, 15(4), 3215-3230.

  151. Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, 6(2), 171–178. doi:10.1016/S0959-4388(96)80070-5

    PubMed  Google Scholar 

  152. Treisman, A. (1998). Feature binding, attention, and object perception. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353(1373), 1295–1306. doi:10.1098/rstb.1998.0284

    PubMed Central  PubMed  Google Scholar 

  153. Treisman, A. (2006). How the deployment of attention determines what we see. Visual Cognition, 14(4–8), 411–443. doi:10.1080/13506280500195250

    PubMed Central  PubMed  Google Scholar 

  154. Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi:10.1016/0010-0285(80)90005-5

    PubMed  Google Scholar 

  155. Treisman, A., & Zhang, W. (2006). Location and binding in visual working memory. Memory and Cognition, 34(8), 1704–1719. doi:10.3758/BF03195932

    PubMed Central  PubMed  Google Scholar 

  156. Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101(1), 80–102. doi:10.1037/0033-295X.101.1.80

    PubMed  Google Scholar 

  157. Ungerleider, L. G., & Haxby, J. V. (1994). 'What' and 'where' in the human brain. Current Opinion in Neurobiology, 4(2), 157–165. doi:10.1016/0959-4388(94)90066-3

    PubMed  Google Scholar 

  158. Ushitani, T., Imura, T., & Tomonaga, M. (2010). Object-based attention in chimpanzees (Pan troglodytes). Vision Research, 50(6), 577–584. doi:10.1016/j.visres.2010.01.003

    PubMed  Google Scholar 

  159. van Boxtel, J. J. A., Tsuchiya, N., & Koch, C. (2010). Consciousness and attention: On sufficiency and necessity. Frontiers in Psychology, 1(217). doi: 10.3389/fpsyg.2010.00217

  160. Ward, R. (2013). Attention, evolutionary perspectives. In H. E. Pashler (Ed.), Encyclopedia of the Mind (Vol. 1, pp. 53–56). Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  161. Wegner, D. M. (2003). The mind's best trick: How we experience conscious will. Trends in Cognitive Sciences, 7(2), 65–69. doi:10.1016/S1364-6613(03)00002-0

    PubMed  Google Scholar 

  162. Weiskrantz, L. (1996). Blindsight revisited. Current Opinion in Neurobiology, 6(2), 215–220. doi:10.1016/S0959-4388(96)80075-4

    PubMed  Google Scholar 

  163. Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48–64. doi:10.1037/0096-3445.131.1.48

    Google Scholar 

  164. Wiederman, S. D., & O'Carroll, D. C. (2013). Selective attention in an insect visual neuron. Current Biology, 23(2), 156–161. doi:10.1016/j.cub.2012.11.048

    PubMed  Google Scholar 

  165. Wolfe, J. M. (2012). The binding problem lives on: Comment on Di Lollo. Trends in Cognitive Sciences, 16(6), 307–308. doi:10.1016/j.tics.2012.04.013

    PubMed  Google Scholar 

  166. Wolfe, J. M., & Cave, K. R. (1999). The psychophysical evidence for a binding problem in human vision. Neuron, 24(1), 11–17. doi:10.1016/S0896-6273(00)80818-1

    PubMed  Google Scholar 

  167. Wright, R. D., & Ward, L. M. (2008). Orienting of Attention. Oxford: Oxford University Press.

    Google Scholar 

  168. Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24(3), 295–340. doi:10.1016/0010-0285(92)90010-Y

    PubMed  Google Scholar 

  169. Yantis, S. (1993). Stimulus-driven attentional capture and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 676–681. doi:10.1037/0096-1523.19.3.676

    PubMed  Google Scholar 

  170. Yantis, S. (2000). Goal-directed and stimulus-driven determinants of attentional control. In S. Monsell & J. Driver (Eds.), Control of Cognitive Processes. Attention and Performance XVIII (pp. 73-103). Cambridge, MA: MIT Press.

    Google Scholar 

  171. Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95–107. doi:10.1037/0096-1523.20.1.95

    PubMed  Google Scholar 

  172. Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5(10), 995–1002. doi:10.1038/nn921

    PubMed  Google Scholar 

  173. Yantis, S., & Serences, J. T. (2003). Cortical mechanisms of space-based and object-based attentional control. Current Opinion in Neurobiology, 13(2), 187–193. doi:10.1016/S0959-4388(03)00033-3

    PubMed  Google Scholar 

  174. Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396(6706), 72–75. doi:10.1038/23936

    PubMed  Google Scholar 

  175. Zmigrod, S., & Hommel, B. (2011). The relationship between feature binding and consciousness: Evidence from asynchronous multi-modal stimuli. Consciousness and Cognition, 20(3), 586–593. doi:10.1016/j.concog.2011.01.011

    PubMed  Google Scholar 

  176. Zmigrod, S., Spapé, M., & Hommel, B. (2009). Intermodal event files: Integrating features across vision, audition, taction, and action. Psychological Research, 73(5), 674–684. doi:10.1007/s00426-008-0163-5

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This paper is based on an upcoming book by the authors (Montemayor & Haladjian 2014). Part of this research was funded by a postdoctoral fellowship in the Foundational Processes of Behavior at the University of Western Sydney (HHH).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harry Haroutioun Haladjian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haladjian, H.H., Montemayor, C. On the evolution of conscious attention. Psychon Bull Rev 22, 595–613 (2015). https://doi.org/10.3758/s13423-014-0718-y

Download citation

Keywords

  • Consciousness
  • Attention
  • Conscious attention
  • Evolution