Psychonomic Bulletin & Review

, Volume 22, Issue 3, pp 595–613 | Cite as

On the evolution of conscious attention

  • Harry Haroutioun HaladjianEmail author
  • Carlos Montemayor
Theoretical Review


This paper aims to clarify the relationship between consciousness and attention through theoretical considerations about evolution. Specifically, we will argue that the empirical findings on attention and the basic considerations concerning the evolution of the different forms of attention demonstrate that consciousness and attention must be dissociated regardless of which definition of these terms one uses. To the best of our knowledge, no extant view on the relationship between consciousness and attention has this advantage. Because of this characteristic, this paper presents a principled and neutral way to settle debates concerning the relationship between consciousness and attention, without falling into disputes about the meaning of these terms. A decisive conclusion of this approach is that extreme views on the relationship between consciousness and attention must be rejected, including identity and full dissociation views. There is an overlap between the two within conscious attention, but developing a full understanding of this mechanism requires further empirical investigations.


Consciousness Attention Conscious attention Evolution 



This paper is based on an upcoming book by the authors (Montemayor & Haladjian 2014). Part of this research was funded by a postdoctoral fellowship in the Foundational Processes of Behavior at the University of Western Sydney (HHH).


  1. Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. doi: 10.1111/j.0963-7214.2004.01502006.x PubMedGoogle Scholar
  2. Alvarez, G. A., & Oliva, A. (2008). The representation of simple ensemble visual features outside the focus of attention. Psychological Science, 19(4), 392–398. doi: 10.1111/j.1467-9280.2008.02098.x PubMedCentralPubMedGoogle Scholar
  3. Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437–443. doi: 10.1016/j.tics.2012.06.010 PubMedCentralPubMedGoogle Scholar
  4. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126. doi: 10.1016/S1364-6613(00)01593-X PubMedGoogle Scholar
  5. Baars, B. J. (1988). A Cognitive Theory of Consciousness. Cambridge: Cambridge University Press.Google Scholar
  6. Baars, B. J. (1998). The functions of consciousness: Reply. Trends in Neurosciences, 21(5), 201. doi: 10.1016/S0166-2236(98)01252-1 Google Scholar
  7. Baars, B. J. (2002). The conscious access hypothesis: Origins and recent evidence. Trends in Cognitive Sciences, 6(1), 47–52. doi: 10.1016/S1364-6613(00)01819-2 PubMedGoogle Scholar
  8. Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4(11), 417–423. doi: 10.1016/S1364-6613(00)01538-2 PubMedGoogle Scholar
  9. Baddeley, A. D., & Della Sala, S. (1996). Working memory and executive control. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 351(1346), 1397–1493. doi: 10.1098/rstb.1996.0123 PubMedGoogle Scholar
  10. Baddeley, A. D., & Weiskrantz, L. (Eds.). (1993). Attention: Selection, Awareness, and Control: A Tribute to Donald Broadbent. Oxford: Clarendon Press.Google Scholar
  11. Batson, M. A., Beer, A. L., Seitz, A. R., & Watanabe, T. (2011). Spatial shifts of audio-visual interactions by perceptual learning are specific to the trained orientation and eye. Seeing and Perceiving, 24(6), 579–594. doi: 10.1163/187847611X603738 PubMedGoogle Scholar
  12. Baylis, G. C., & Driver, J. (1993). Visual attention and objects: Evidence for hierarchical coding of location. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 451–470. doi: 10.1037/0096-1523.19.3.451 PubMedGoogle Scholar
  13. Bayne, T. (2007). Conscious states and conscious creatures: Explanation in the scientific study of consciousness. Philosophical Perspectives, 21(1), 1–22. doi: 10.1111/j.1520-8583.2007.00118.x Google Scholar
  14. Beauchamp, M. S., Petit, L., Ellmore, T. M., Ingeholm, J., & Haxby, J. V. (2001). A parametric fMRI study of overt and covert shifts of visuospatial attention. NeuroImage, 14(2), 310–321. doi: 10.1006/nimg.2001.0788 PubMedGoogle Scholar
  15. Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 18(2), 227–247. doi: 10.1017/S0140525X00038188 Google Scholar
  16. Brefczynski, J. A., & DeYoe, E. A. (1999). A physiological correlate of the 'spotlight' of visual attention. Nature Neuroscience, 2(4), 370–374. doi: 10.1038/7280 PubMedGoogle Scholar
  17. Brogaard, B. (2011). Are there unconscious perceptual processes? Consciousness and Cognition, 20(2), 449–463. doi: 10.1016/j.concog.2010.10.002 PubMedGoogle Scholar
  18. Brogaard, B. (2012). Non-visual consciousness and visual images in blindsight. Consciousness and Cognition, 21(1), 595–596. doi: 10.1016/j.concog.2011.12.003 PubMedGoogle Scholar
  19. Bruya, B. (2010). Effortless Attention: A New Perspective in the Cognitive Science of Attention and Action. Cambridge, MA: MIT Press.Google Scholar
  20. Bundesen, C., Habekost, T., & Kyllingsbaek, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112(2), 291–328. doi: 10.1037/0033-295X.112.2.291 PubMedGoogle Scholar
  21. Burkell, J. A., & Pylyshyn, Z. W. (1997). Searching through subsets: A test of the visual indexing hypothesis. Spatial Vision, 11(2), 225–258. doi: 10.1163/156856897X00203 PubMedGoogle Scholar
  22. Burnham, B. R. (2007). Displaywide visual features associated with a search display's appearance can mediate attentional capture. Psychonomic Bulletin & Review, 14(3), 392–422. doi: 10.3758/BF03194082 Google Scholar
  23. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51(13), 1484–1525. doi: 10.1016/j.visres.2011.04.012 PubMedCentralPubMedGoogle Scholar
  24. Carruthers, P. (2000). Phenomenal Consciousness. Cambridge: Cambridge University Press.Google Scholar
  25. Chalmers, D. J. (1996). The Conscious Mind: In Search of a Fundamental Theory. New York: Oxford University Press.Google Scholar
  26. Chen, Z. (2012). Object-based attention: A tutorial review. Attention, Perception, & Psychophysics, 74(5), 784–802. doi: 10.3758/s13414-012-0322-z Google Scholar
  27. Chesney, D. L., & Haladjian, H. H. (2011). Evidence for a shared mechanism used in multiple-object tracking and subitizing. Attention, Perception, & Psychophysics, 73(8), 2457–2480. doi: 10.3758/s13414-011-0204-9 Google Scholar
  28. Chou, W.-L., & Yeh, S.-L. (2012). Object-based attention occurs regardless of object awareness. Psychonomic Bulletin & Review, 19(2), 225–231. doi: 10.3758/s13423-011-0207-5 Google Scholar
  29. Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3), 181–204. doi: 10.1017/S0140525X12000477 PubMedGoogle Scholar
  30. Cohen, E. H., & Tong, F. (2013). Neural Mechanisms of Object-Based Attention. Cerebral Cortex. doi: 10.1093/cercor/bht303 Google Scholar
  31. Cohen, M. A., Cavanagh, P., Chun, M. M., & Nakayama, K. (2012). The attentional requirements of consciousness. Trends in Cognitive Sciences, 16(8), 411–417. doi: 10.1016/j.tics.2012.06.013 PubMedGoogle Scholar
  32. Cosmides, L., & Tooby, J. (2013). Evolutionary psychology: New perspectives on cognition and motivation. Annual Review of Psychology, 64, 201–229. doi: 10.1146/annurev.psych.121208.131628 PubMedGoogle Scholar
  33. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114. doi: 10.1017/S0140525X01373922. discussion 114-185.PubMedGoogle Scholar
  34. Csikszentmihalyi, M. (1997). Finding Flow: The Psychology of Engagement with Everyday Life (1st ed.). New York: Basic Books.Google Scholar
  35. de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2004). Neural correlates of attentional capture in visual search. Journal of Cognitive Neuroscience, 16(5), 751–759. doi: 10.1162/089892904970762 PubMedGoogle Scholar
  36. Dehaene, S., & Naccache, L. (2001). Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition, 79(1–2), 1–37. doi: 10.1016/S0010-0277(00)00123-2 PubMedGoogle Scholar
  37. Dennett, D. C. (1969). Content and Consciousness. London: Routledge.Google Scholar
  38. Dennett, D. C. (1991). Consciousness Explained (1st ed.). Boston, MA: Little, Brown and Co.Google Scholar
  39. Dennett, D. C. (2005). Sweet Dreams: Philosophical Obstacles to a Science of Consciousness. Cambridge, MA: MIT Press.Google Scholar
  40. Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi: 10.1146/ PubMedGoogle Scholar
  41. Desmurget, M., Reilly, K. T., Richard, N., Szathmari, A., Mottolese, C., & Sirigu, A. (2009). Movement intention after parietal cortex stimulation in humans. Science, 324(5928), 811–813. doi: 10.1126/science.1169896 PubMedGoogle Scholar
  42. Di Lollo, V., Enns, J. T., & Rensink, R. A. (2000). Competition for consciousness among visual events: The psychophysics of reentrant visual processes. Journal of Experimental Psychology: General, 129(4), 481–507. doi: 10.1037/0096-3445.129.4.481 Google Scholar
  43. Edelman, D. B., Baars, B. J., & Seth, A. K. (2005). Identifying hallmarks of consciousness in non-mammalian species. Consciousness and Cognition, 14(1), 169–187. doi: 10.1016/j.concog.2004.09.001 PubMedGoogle Scholar
  44. Eriksen, C. W., & Yeh, Y.-Y. (1985). Allocation of attention in the visual field. Journal of Experimental Psychology: Human Perception and Performance, 11(5), 583–597. doi: 10.1037/0096-1523.11.5.583 PubMedGoogle Scholar
  45. Feinberg, T. E., & Mallatt, J. (2013). The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Frontiers in Psychology, 4. doi:  10.3389/fpsyg.2013.00667
  46. Feldman, J. (2007). Formation of visual “objects” in the early computation of spatial relations. Perception & Psychophysics, 69(5), 816–827. doi: 10.3758/BF03193781 Google Scholar
  47. Filevich, E., Vanneste, P., Brass, M., Fias, W., Haggard, P., & Kühn, S. (2013). Brain correlates of subjective freedom of choice. Consciousness and Cognition, 22(4), 1271–1284. doi: 10.1016/j.concog.2013.08.011 PubMedCentralPubMedGoogle Scholar
  48. Finlay, B. L., & Brodsky, P. B. (2006). Cortical evolution as the expression of a program for disproportionate growth and the proliferation of areas. In J. H. Kaas (Ed.), Evolution of Nervous Systems: A Comprehensive Reference (1st ed., Vol. 1, pp. 73–96). Amsterdam: Elsevier Academic Press.Google Scholar
  49. Fitch, W. T., Hauser, M. D., & Chomsky, N. (2005). The evolution of the language faculty: Clarifications and implications. Cognition, 97(2), 179–210. doi: 10.1016/j.cognition.2005.02.005. discussion 211-125.PubMedGoogle Scholar
  50. Fodor, J. A. (1983). The Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA: MIT Press.Google Scholar
  51. Fodor, J. A. (1998). Concepts: Where Cognitive Science Went Wrong. Oxford: Oxford University Press.Google Scholar
  52. Gallistel, C. R. (1990a). The Organization of Learning. Cambridge, MA: MIT Press.Google Scholar
  53. Gallistel, C. R. (1990b). Representations in animal cognition: An introduction. Cognition, 37(1–2), 1–22. doi: 10.1016/0010-0277(90)90016-D PubMedGoogle Scholar
  54. Gazzaley, A., & Nobre, A. C. (2011). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135. doi: 10.1016/j.tics.2011.11.014 PubMedCentralPubMedGoogle Scholar
  55. Gegenfurtner, K. R. (2003). Cortical mechanisms of colour vision. Nature Reviews Neuroscience, 4(7), 563–572. doi: 10.1038/nrn1138 PubMedGoogle Scholar
  56. Geisler, W. S., Perry, J. S., Super, B. J., & Gallogly, D. P. (2001). Edge co-occurrence in natural images predicts contour grouping performance. Vision Research, 41(6), 711–724. doi: 10.1016/S0042-6989(00)00277-7 PubMedGoogle Scholar
  57. Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B: Biological Sciences, 205(1161), 581–598. doi: 10.2307/77447 Google Scholar
  58. Griffin, D. R., & Speck, G. B. (2004). New evidence of animal consciousness. Animal Cognition, 7(1), 5–18. doi: 10.1007/s10071-003-0203-x PubMedGoogle Scholar
  59. Haladjian, H. H., Montemayor, C., & Pylyshyn, Z. W. (2008). Segregating targets and nontargets in depth eliminates inhibition of nontargets in Multiple Object Tracking. Visual Cognition, 16(1), 107–110. doi: 10.1007/s10071-003-0203-x Google Scholar
  60. Haladjian, H. H., & Pylyshyn, Z. W. (2011). Enumerating by pointing to locations: A new method for measuring the numerosity of visual object representations. Attention, Perception, & Psychophysics, 73(2), 303–308. doi: 10.3758/s13414-010-0030-5 Google Scholar
  61. Hamker, F. H. (2005). The reentry hypothesis: The putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cerebral Cortex, 15(4), 431–447. doi: 10.1093/cercor/bhh146 PubMedGoogle Scholar
  62. Hollingworth, A., & Maxcey-Richard, A. M. (2013). Selective maintenance in visual working memory does not require sustained visual attention. Journal of Experimental Psychology: Human Perception and Performance, 39(4), 1047–1058. doi: 10.1037/a0030238 PubMedCentralPubMedGoogle Scholar
  63. Hommel, B. (2004). Event files: Feature binding in and across perception and action. Trends in Cognitive Sciences, 8(11), 494–500. doi: 10.1016/j.tics.2004.08.007 PubMedGoogle Scholar
  64. Hommel, B. (2005). How much attention does an event file need? Journal of Experimental Psychology: Human Perception and Performance, 31(5), 1067–1082. doi: 10.1037/0096-1523.31.5.1067 PubMedGoogle Scholar
  65. Hommel, B. (2007). Feature integration across perception and action: Event files affect response choice. Psychological Research, 71(1), 42–63. doi: 10.1007/s00426-005-0035-1 PubMedGoogle Scholar
  66. Horowitz, T. S., Holcombe, A. O., Wolfe, J. M., Arsenio, H. C., & DiMase, J. S. (2004). Attentional pursuit is faster than attentional saccade. Journal of Vision, 4(7), 585–603. doi: 10.1167/4.7.6 PubMedGoogle Scholar
  67. Hubel, D. H. (1995). Eye, Brain, and Vision. New York: Scientific American Library.Google Scholar
  68. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160, 106–154.PubMedCentralPubMedGoogle Scholar
  69. Humphrey, N. (2011). Soul Dust: The Magic of Consciousness. Princeton: Princeton University Press.Google Scholar
  70. Johnson, J. S., Hollingworth, A., & Luck, S. J. (2008). The role of attention in the maintenance of feature bindings in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 34(1), 41–55. doi: 10.1037/0096-1523.34.1.41 PubMedCentralPubMedGoogle Scholar
  71. Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114(1), 3–28. doi: 10.1037/0033-2909.114.1.3 PubMedGoogle Scholar
  72. Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24(2), 175–219. doi: 10.1016/0010-0285(92)90007-O PubMedGoogle Scholar
  73. Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341. doi: 10.1146/annurev.neuro.23.1.315 PubMedGoogle Scholar
  74. Kentridge, R. W. (2012). Blindsight: Spontaneous scanning of complex scenes. Current Biology, 22(15), R605–R606. doi: 10.1016/j.cub.2012.06.011 PubMedGoogle Scholar
  75. Kentridge, R. W., Nijboer, T. C. W., & Heywood, C. A. (2008). Attended but unseen: Visual attention is not sufficient for visual awareness. Neuropsychologia, 46(3), 864–869. doi: 10.1016/j.neuropsychologia.2007.11.036 PubMedGoogle Scholar
  76. Koch, C. (2004). The Quest for Consciousness: A Neurobiological Approach. Denver, CO: Roberts & Company Publishers.Google Scholar
  77. Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227. doi: 10.1007/978-94-009-3833-5_5 PubMedGoogle Scholar
  78. Kovács, I. (1996). Gestalten of today: Early processing of visual contours and surfaces. Behavioural Brain Research, 82(1), 1–11. doi: 10.1016/S0166-4328(97)81103-5 PubMedGoogle Scholar
  79. Kühn, S., & Brass, M. (2009). Retrospective construction of the judgement of free choice. Consciousness and Cognition, 18(1), 12–21. doi: 10.1016/j.concog.2008.09.007 PubMedGoogle Scholar
  80. Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago: University of Chicago Press.Google Scholar
  81. Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends in Cognitive Sciences, 7(1), 12–18. doi: 10.1016/S1364-6613(02)00013-X PubMedGoogle Scholar
  82. Lamme, V. A. F. (2006). Towards a true neural stance on consciousness. Trends in Cognitive Sciences, 10(11), 494–501. doi: 10.1016/j.tics.2006.09.001 PubMedGoogle Scholar
  83. Lovibond, P. F., Liu, J. C. J., Weidemann, G., & Mitchell, C. J. (2011). Awareness is necessary for differential trace and delay eyeblink conditioning in humans. Biological Psychology, 87(3), 393–400. doi: 10.1016/j.biopsycho.2011.05.002 PubMedGoogle Scholar
  84. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77(1), 24–42.PubMedGoogle Scholar
  85. Mangun, G. R. (1995). Neural mechanisms of visual selective attention. Psychophysiology, 32(1), 4–18. doi: 10.1146/ PubMedGoogle Scholar
  86. Marr, D. (1980). Visual information processing: The structure and creation of visual representations. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 290(1038), 199–218. doi: 10.1098/rstb.1980.0091 PubMedGoogle Scholar
  87. Maunsell, J. H., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in Neurosciences, 29(6), 317–322. doi: 10.1016/j.tins.2006.04.001 PubMedGoogle Scholar
  88. McDowell, J. H. (1994). Mind and World. Cambridge, MA: Harvard University Press.Google Scholar
  89. Melcher, D., & Vidnyanszky, Z. (2006). Subthreshold features of visual objects: Unseen but not unbound. Vision Research, 46(12), 1863–1867. doi: 10.1016/j.visres.2005.11.021 PubMedGoogle Scholar
  90. Merker, B. (2005). The liabilities of mobility: A selection pressure for the transition to consciousness in animal evolution. Consciousness and Cognition, 14(1), 89–114. doi: 10.1016/S1053-8100(03)00002-3 PubMedGoogle Scholar
  91. Meuwese, J. D. I., Post, R. A. G., Scholte, H. S., & Lamme, V. A. F. (2013). Does perceptual learning require consciousness or attention? Journal of Cognitive Neuroscience, 25(10), 1579–1596. doi: 10.1162/jocn_a_00424 PubMedGoogle Scholar
  92. Milner, A. D., & Goodale, M. A. (1995). The Visual Brain in Action (1st ed.). Oxford: Oxford University Press.Google Scholar
  93. Milner, A. D., & Goodale, M. A. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774–785. doi: 10.1016/j.neuropsychologia.2007.10.005 PubMedGoogle Scholar
  94. Mitchell, K. J., & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135(4), 638–677. doi: 10.1037/a0015849 PubMedCentralPubMedGoogle Scholar
  95. Mitroff, S. R., Scholl, B. J., & Wynn, K. (2005). The relationship between object files and conscious perception. Cognition, 96(1), 67–92. doi: 10.1167/3.9.338 PubMedGoogle Scholar
  96. Montemayor, C. (2013). Minding Time: A Philosophical and Theoretical Approach to the Psychology of Time. Boston: Brill.Google Scholar
  97. Montemayor, C., & Haladjian, H. H. (2014). Consciousness, Attention, and Conscious Attention. Cambridge, MA: MIT Press.Google Scholar
  98. Mudrik, L., Faivre, N., & Koch, C. (2014). Information integration without awareness. Trends in Cognitive Sciences, 18(9), 488–496. doi:  10.1016/j.tics.2014.04.009
  99. Nagel, T. (1974). What is it like to be a bat? Philosophical Review, 83(4), 435–450.Google Scholar
  100. Newsome, W. T., & Paré, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). The Journal of Neuroscience, 8(6), 2201–2211.PubMedGoogle Scholar
  101. Nichols, S., & Grantham, T. (2000). Adaptive complexity and phenomenal consciousness. Philosophy of Science, 67(4), 648–670.Google Scholar
  102. Norman, L. J., Heywood, C. A., & Kentridge, R. W. (2013). Object-based attention without awareness. Psychological Science, 24(6), 836–843. doi: 10.1177/0956797612461449 PubMedGoogle Scholar
  103. O'Craven, K. M., Downing, P. E., & Kanwisher, N. (1999). fMRI evidence for objects as the units of attentional selection. Nature, 401(6753), 584–587. doi: 10.1038/44134 PubMedGoogle Scholar
  104. Oberauer, K., & Hein, L. (2012). Attention to information in working memory. Current Directions in Psychological Science, 21(3), 164–169. doi: 10.1177/0963721412444727 Google Scholar
  105. Olivers, C. N. L. (2008). Interactions between visual working memory and visual attention. Frontiers in Bioscience, 13, 1182–1191. doi: 10.2741/2754 PubMedGoogle Scholar
  106. Perry, J. (1997). Indexicals and demonstratives. In R. Hale & C. Wright (Eds.), Companion to the Philosophy of Language. Oxford: Blackwell.Google Scholar
  107. Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 73–89. doi: 10.1146/annurev-neuro-062111-150525 PubMedCentralPubMedGoogle Scholar
  108. Peterson, M. S., Kramer, A. F., & Irwin, D. E. (2004). Covert shifts of attention precede involuntary eye movements. Perception & Psychophysics, 66(3), 398–405. doi: 10.3758/BF03194888 Google Scholar
  109. Polger, T., & Flanagan, O. (2002). Consciousness, adaptation and epiphenomenalism. In J. H. Fetzer (Ed.), Consciousness Evolving (pp. 21–41). Amsterdam: John Benjamins Pub.Google Scholar
  110. Pollen, D. A. (2003). Explicit neural representations, recursive neural networks and conscious visual perception. Cerebral Cortex, 13(8), 807–814. doi: 10.1093/cercor/13.8.807 PubMedGoogle Scholar
  111. Pöppel, E. (1988). Mindworks: Time and Conscious Experience (1st ed.). Boston: Harcourt Brace Jovanovich.Google Scholar
  112. Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3–25.PubMedGoogle Scholar
  113. Posner, M. I. (1992). Attention as a cognitive and neural system. Current Directions in Psychological Science, 1(1), 11–14. doi: 10.1111/1467-8721.ep10767759 Google Scholar
  114. Posner, M. I., Cohen, Y., & Rafal, R. D. (1982). Neural systems control of spatial orienting. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 298(1089), 187–198. doi: 10.1098/rstb.1982.0081 PubMedGoogle Scholar
  115. Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. Journal of Experimental Psychology, 109(2), 160–174. doi: 10.1037/0096-3445.109.2.160 PubMedGoogle Scholar
  116. Prinz, J. J. (2012). The Conscious Brain: How Attention Engenders Experience. New York: Oxford University Press.Google Scholar
  117. Pylyshyn, Z. W. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32(1), 65–97. doi: 10.1016/0010-0277(89)90014-0 PubMedGoogle Scholar
  118. Pylyshyn, Z. W. (1999). Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. Behavioral and Brain Sciences, 22(3), 341–365. discussion 366-423.PubMedGoogle Scholar
  119. Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80(1–2), 127–158. doi: 10.1016/S0010-0277(00)00156-6 PubMedGoogle Scholar
  120. Pylyshyn, Z. W. (2003). Seeing and Visualizing: It's Not What You Think. Cambridge, MA: MIT Press.Google Scholar
  121. Pylyshyn, Z. W. (2006). Some puzzling findings in multiple object tracking (MOT): II. Inhibition of moving nontargets. Visual Cognition, 14(2), 175–198. doi: 10.1080/13506280544000200 Google Scholar
  122. Pylyshyn, Z. W. (2007). Things and Places: How the Mind Connects with the World. Cambridge, MA: MIT Press.Google Scholar
  123. Pylyshyn, Z. W., Haladjian, H. H., King, C. E., & Reilly, J. E. (2008). Selective nontarget inhibition in Multiple Object Tracking. Visual Cognition, 16(8), 1011–1021. doi: 10.1080/13506280802247486 Google Scholar
  124. Rensink, R. A. (2014). A function-centered taxonomy of visual attention. In P. Coates & S. Coleman (Eds.), Phenomenal Qualities: Sense, Perception, and Consciousness. Oxford: Oxford University Press.Google Scholar
  125. Roelfsema, P. R., Lamme, V. A. F., & Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature, 395(6700), 376–381. doi: 10.1038/26475 PubMedGoogle Scholar
  126. Rosenthal, D. M. (2008). Consciousness and its function. Neuropsychologia, 46(3), 829–840. doi: 10.1016/j.neuropsychologia.2007.11.012 PubMedGoogle Scholar
  127. Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80(1–2), 1–46. doi: 10.1016/S0010-0277(00)00152-9 PubMedGoogle Scholar
  128. Scholl, B. J., Pylyshyn, Z. W., & Feldman, J. (2001). What is a visual object? Evidence from target merging in multiple object tracking. Cognition, 80(1–2), 159–177. doi: 10.1016/S0010-0277(00)00157-8 PubMedGoogle Scholar
  129. Seth, A. K., & Baars, B. J. (2005). Neural Darwinism and consciousness. Consciousness and Cognition, 14(1), 140–168. doi: 10.1016/j.concog.2004.08.008 PubMedGoogle Scholar
  130. Seth, A. K., Baars, B. J., & Edelman, D. B. (2005). Criteria for consciousness in humans and other mammals. Consciousness and Cognition, 14(1), 119–139. doi: 10.1016/j.concog.2004.08.006 PubMedGoogle Scholar
  131. Seth, A. K., Dienes, Z., Cleeremans, A., Overgaard, M., & Pessoa, L. (2008). Measuring consciousness: Relating behavioural and neurophysiological approaches. Trends in Cognitive Sciences, 12(8), 314–321. doi: 10.1016/j.tics.2008.04.008 PubMedCentralPubMedGoogle Scholar
  132. Siegel, S. (2002). The role of perception in demonstrative reference. Philosophers’ Imprint, 2(1), 1–21.Google Scholar
  133. Smith, J. M., & Szathmáry, E. (1995). The Major Transitions in Evolution. New York: W.H. Freeman Spektrum.Google Scholar
  134. Spelke, E. (1994). Initial knowledge: Six suggestions. Cognition, 50(1–3), 431–445. doi: 10.1016/0010-0277(94)90039-6 PubMedGoogle Scholar
  135. Spencer, H. (1855). The Principles of Psychology (3rd edition (1987th ed.). New York: D. Appleton & Company.Google Scholar
  136. Stalnaker, R. (1984). Inquiry. Cambridge, MA: MIT Press.Google Scholar
  137. Striedter, G. F. (2006). Precis of principles of brain evolution. Behavioral and Brain Sciences, 29, 1–36. doi: 10.1017/S0140525X06009010 PubMedGoogle Scholar
  138. Tallon-Baudry, C. (2012). On the neural mechanisms subserving consciousness and attention. Frontiers in Psychology, 2, 397. doi: 10.3389/fpsyg.2011.00397 PubMedCentralPubMedGoogle Scholar
  139. Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14(9), 400–410. doi: 10.1016/j.tics.2010.06.008 PubMedCentralPubMedGoogle Scholar
  140. Tanskanen, T., Saarinen, J., Parkkonen, L., & Hari, R. (2008). From local to global: Cortical dynamics of contour integration. Journal of Vision, 8(7), 15 11–12. doi: 10.1167/8.7.15 Google Scholar
  141. Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599–606. doi: 10.3758/BF03211656 Google Scholar
  142. Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77–99. doi: 10.1016/j.actpsy.2010.02.006 PubMedGoogle Scholar
  143. Theeuwes, J., Van der Stigchel, S., & Olivers, C. N. L. (2006). Spatial working memory and inhibition of return. Psychonomic Bulletin & Review, 13(4), 608–613. doi: 10.3758/BF03193970 Google Scholar
  144. Thompson, K. G., Biscoe, K. L., & Sato, T. R. (2005). Neuronal basis of covert spatial attention in the frontal eye field. The Journal of Neuroscience, 25(41), 9479–9487. doi: 10.1523/JNEUROSCI.0741-05.2005 PubMedCentralPubMedGoogle Scholar
  145. Tomasello, M. (1999). The Cultural Origins of Human Cognition. Cambridge, MA: Harvard University Press.Google Scholar
  146. Tononi, G. (2008). Consciousness as integrated information: A provisional manifesto. The Biological Bulletin, 215(3), 216–242.PubMedGoogle Scholar
  147. Tononi, G. (2012). Integrated information theory of consciousness: An updated account. Archives Italiennes de Biologie, 150(2–3), 56–90. doi: 10.4449/aib.v149i5.1388 PubMedGoogle Scholar
  148. Tononi, G., & Koch, C. (2008). The neural correlates of consciousness: An update. Annals of the New York Academy of Sciences, 1124, 239–261. doi: 10.1196/annals.1440.004 PubMedGoogle Scholar
  149. Tooby, J., & Cosmides, L. (1995). Mapping the evolved functional organization of the mind and brain. In M. S. Gazzaniga & E. Bizzi (Eds.), The Cognitive Neurosciences (pp. 1185–1197). Cambridge, MA: MIT Press.Google Scholar
  150. Tootell, R. B., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., …. Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. The Journal of Neuroscience, 15(4), 3215-3230.Google Scholar
  151. Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, 6(2), 171–178. doi: 10.1016/S0959-4388(96)80070-5 PubMedGoogle Scholar
  152. Treisman, A. (1998). Feature binding, attention, and object perception. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353(1373), 1295–1306. doi: 10.1098/rstb.1998.0284 PubMedCentralPubMedGoogle Scholar
  153. Treisman, A. (2006). How the deployment of attention determines what we see. Visual Cognition, 14(4–8), 411–443. doi: 10.1080/13506280500195250 PubMedCentralPubMedGoogle Scholar
  154. Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi: 10.1016/0010-0285(80)90005-5 PubMedGoogle Scholar
  155. Treisman, A., & Zhang, W. (2006). Location and binding in visual working memory. Memory and Cognition, 34(8), 1704–1719. doi: 10.3758/BF03195932 PubMedCentralPubMedGoogle Scholar
  156. Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychological Review, 101(1), 80–102. doi: 10.1037/0033-295X.101.1.80 PubMedGoogle Scholar
  157. Ungerleider, L. G., & Haxby, J. V. (1994). 'What' and 'where' in the human brain. Current Opinion in Neurobiology, 4(2), 157–165. doi: 10.1016/0959-4388(94)90066-3 PubMedGoogle Scholar
  158. Ushitani, T., Imura, T., & Tomonaga, M. (2010). Object-based attention in chimpanzees (Pan troglodytes). Vision Research, 50(6), 577–584. doi: 10.1016/j.visres.2010.01.003 PubMedGoogle Scholar
  159. van Boxtel, J. J. A., Tsuchiya, N., & Koch, C. (2010). Consciousness and attention: On sufficiency and necessity. Frontiers in Psychology, 1(217). doi:  10.3389/fpsyg.2010.00217
  160. Ward, R. (2013). Attention, evolutionary perspectives. In H. E. Pashler (Ed.), Encyclopedia of the Mind (Vol. 1, pp. 53–56). Thousand Oaks, CA: Sage Publications.Google Scholar
  161. Wegner, D. M. (2003). The mind's best trick: How we experience conscious will. Trends in Cognitive Sciences, 7(2), 65–69. doi: 10.1016/S1364-6613(03)00002-0 PubMedGoogle Scholar
  162. Weiskrantz, L. (1996). Blindsight revisited. Current Opinion in Neurobiology, 6(2), 215–220. doi: 10.1016/S0959-4388(96)80075-4 PubMedGoogle Scholar
  163. Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131(1), 48–64. doi: 10.1037/0096-3445.131.1.48 Google Scholar
  164. Wiederman, S. D., & O'Carroll, D. C. (2013). Selective attention in an insect visual neuron. Current Biology, 23(2), 156–161. doi: 10.1016/j.cub.2012.11.048 PubMedGoogle Scholar
  165. Wolfe, J. M. (2012). The binding problem lives on: Comment on Di Lollo. Trends in Cognitive Sciences, 16(6), 307–308. doi: 10.1016/j.tics.2012.04.013 PubMedGoogle Scholar
  166. Wolfe, J. M., & Cave, K. R. (1999). The psychophysical evidence for a binding problem in human vision. Neuron, 24(1), 11–17. doi: 10.1016/S0896-6273(00)80818-1 PubMedGoogle Scholar
  167. Wright, R. D., & Ward, L. M. (2008). Orienting of Attention. Oxford: Oxford University Press.Google Scholar
  168. Yantis, S. (1992). Multielement visual tracking: Attention and perceptual organization. Cognitive Psychology, 24(3), 295–340. doi: 10.1016/0010-0285(92)90010-Y PubMedGoogle Scholar
  169. Yantis, S. (1993). Stimulus-driven attentional capture and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 676–681. doi: 10.1037/0096-1523.19.3.676 PubMedGoogle Scholar
  170. Yantis, S. (2000). Goal-directed and stimulus-driven determinants of attentional control. In S. Monsell & J. Driver (Eds.), Control of Cognitive Processes. Attention and Performance XVIII (pp. 73-103). Cambridge, MA: MIT Press.Google Scholar
  171. Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95–107. doi: 10.1037/0096-1523.20.1.95 PubMedGoogle Scholar
  172. Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5(10), 995–1002. doi: 10.1038/nn921 PubMedGoogle Scholar
  173. Yantis, S., & Serences, J. T. (2003). Cortical mechanisms of space-based and object-based attentional control. Current Opinion in Neurobiology, 13(2), 187–193. doi: 10.1016/S0959-4388(03)00033-3 PubMedGoogle Scholar
  174. Yeshurun, Y., & Carrasco, M. (1998). Attention improves or impairs visual performance by enhancing spatial resolution. Nature, 396(6706), 72–75. doi: 10.1038/23936 PubMedGoogle Scholar
  175. Zmigrod, S., & Hommel, B. (2011). The relationship between feature binding and consciousness: Evidence from asynchronous multi-modal stimuli. Consciousness and Cognition, 20(3), 586–593. doi: 10.1016/j.concog.2011.01.011 PubMedGoogle Scholar
  176. Zmigrod, S., Spapé, M., & Hommel, B. (2009). Intermodal event files: Integrating features across vision, audition, taction, and action. Psychological Research, 73(5), 674–684. doi: 10.1007/s00426-008-0163-5 PubMedCentralPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  • Harry Haroutioun Haladjian
    • 1
    Email author
  • Carlos Montemayor
    • 2
  1. 1.School of Social Sciences and PsychologyUniversity of Western Sydney (Bankstown)PenrithAustralia
  2. 2.Department of PhilosophySan Francisco State UniversitySan FranciscoUSA

Personalised recommendations