Abstract
The body of research that examines the perception of biological motion is extensive and explores the factors that are perceived from biological motion and how this information is processed. This research demonstrates that individuals are able to use relative (temporal and spatial) information from a person’s movement to recognize factors, including gender, age, deception, emotion, intention, and action. The research also demonstrates that movement presents idiosyncratic properties that allow individual discrimination, thus providing the basis for significant exploration in the domain of biometrics and social signal processing. Medical forensics, safety garments, and victim selection domains also have provided a history of research on the perception of biological motion applications; however, a number of additional domains present opportunities for application that have not been explored in depth. Therefore, the purpose of this paper is to present an overview of the current applications of biological motion-based research and to propose a number of areas where biological motion research, specific to recognition, could be applied in the future.
This is a preview of subscription content, access via your institution.
References
Abernethy, B. (1989). Expert-novice differences in perception: How expert does the expert have to be? Journal of Sports Sciences, 14(1), 27–30. Retrieved from http://psycnet.
Alpert, G. P., Dunham, R. G. (2004). Understanding police use of force: Officers, suspects, and reciprocity. Cambridge, UK: Cambridge University Press.
Archer, C. I. (2002). World history of warfare. Lincoln, NE: University of Nebraska Press.
Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33(6), 717–746. doi:10.1068/p5096
Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorder. Neuropsychologia, 47(13), 3023–3029. doi:10.1016/j.neuropsychologia.2009.05. 019
Barclay, C. D., Cutting, J. E., & Kozlowski, L. T. (1978). Temporal and spatial factors in gait perception that influence gender recognition. Perception and Psychophysics, 23(2), 145–152. Retrieved from http://link.springer.com/article/10.3758/BF032082
Ben-Abdelkader, C., Cutler, R., & Davis, L. (2002, May, 20-21). Motion-based recognition of people in EigenGait space. Paper presented at the 5th IEEE International Conference on Automatic Face and Gesture Recognition, Washington, DC.
Boyd, J. E., & Little, J. J. (2003). Biometric gait recognition. In M. Tistarelli, J. Bigun, & E. Grosso (Eds.), Advanced studies in biometrics: Summer school on biometrics, Alghero, Italy, revised selected lectures and papers (pp. 19–42). Halmstad: Springer.
Boulgouris, N., Hatzinakos, D., & Plataniotis, K. (2005). Gait recognition: A challenging signal processing technology for biometric identification. IEEE Signal Processing Magazine, 78–90.
Burke, S., Priest, H. A., Salas, E., Sims, D., Mayer, K. (2008). Stress and teams: How stress affects decision making at the team level. In P. A. Hancock., & J. L . Szalma (Eds.), Performance under stress (181–208). Hampshire, ENG: Ashgate Publishing Limited.
Casale, P., Pujol, O., & Radeva, P. (2012). Personalization and user verification in wearable systems using biometric walking patterns. Personal and Ubiquitous Computing, 16(5), 563–580. doi:10.1007/s00779-011-0415-z
Clarke, T. J., Bradshaw, M. F., Field, D. T., Hampson, S. E., & Rose, D. (2005). The perception of emotion from body movement in point-light displays in interpersonal dialogue. Perception, 34(10), 1171–1180. doi:10.1068/p5203
Cunado, D., Nixon, M. S., & Carter, J. N. (2003). Automatic extraction and description of human gait models for recognition purposes. Computer Vision and Image Understanding, 90(1), 1–41. doi:10.1016/S1077-3142(03)00008-0
Cutting, J. E., & Kozlowski, L. T. (1977). Recognising friends by their walk; Gait perception without familiarity cues. Bulletin of the Psychonomic Society, 9(5), 353–356. Retrieved from http://link.springer.com/article/10.3758/BF03337021
Cutting, J. E., Proffitt, D. R., & Kozlowski, L. T. (1978). A biomechanical invariant for gait perception. Journal of Experimental Psychology: Human Perception and Performance, 4(3), 357–372. doi:10.1037/0096-1523.4.3.357
Davis, J. W., & Taylor, S. R. (2002, 11-15, August). Analysis and recognition of walking movements. Paper presented at the International Conference on Pattern Recognition Quebec City, Canada.
Dittrich, W. H. (1993). Action categories and the perception of biological motion. Perception, 22(1), 15–22. doi:10.1068/p220015
Edwards, B. (2007). C. S. Lewis: Life, works and legacy, Volume 1. London: Greenwood Publishing Group.
Ellem E. (2013). Can video training improve the accuracy and speed of Teammate Identification (TM-ID) in Sports People? (unpublished honours thesis). University of Western Sydney, Sydney. Australia.
Endsley, M. (2013). Situation awareness. In J. D. Lee., & A. Kirlik (Eds.), The Oxford Handbook of Cognitive Engineering (pp. 88–108). New York, USA: Oxford University Press.
Fodor, J. A. (1983). The modularity of mind. MA: MIT Press.
Fodor, J. A. (1985). Precis of the modularity of mind. Behavioural Brain Science., 8, 1–42.
Foster, J. P., Nixon, M. S., & Prügel-Bennett. (2003). Automatic gait recognition using area based metrics. Pattern Recognition Letters, 24(14), 2489–2497. doi:10.1016/S0167-8655(03)00094-1
Fox, R., & McDaniel, C. (1982). The perception of biological motion by human infants. Science, 218, 486–487.
Garrison, W. B. (1999). Friendly fire in the civil war: More than 100 true stories of comrade killing. Nashville, TN: Rutledge Hill press.
Gibson, J. J. (1986). The ecological approach to visual perception. London: LEA.
Grayson, B., & Stein, M. I. (1981). Attracting assault: Victims nonverbal cues. Journal of Communication, 31, 68–75.
Green, M. (2005). Is it a gun or a wallet? Perceptual factors in police shootings of unarmed suspects. Police Marksman, July/August, 52–54.
Grézes, J., Fonlupt, P., Bertenthal, B. I., Delon-Martin, C., Segebarth, C., & Decety, J. (2001). Does perception of biological motion rely on specific brain regions. NeuroImage, 13(5), 775–785. doi:10.1006/nimg.2000.0740
Grossman, E. D., Blake, R. (1999). Perception of coherent motion, biological motion and form-from-motion under dim-light conditions. Vision Research, 39, 3721–3727.
Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12(5), 711–721. doi:10.1162/089892900562417
Gunns, R. E., Johnsyon, L., & Hudson, S. M. (2002). Victim selection and kinematics: a point-light investigation of vulnerability. Journal of Nonverbal Behavior, 26(3), 129–158.
Gurnsey, R., Roddy, G., & Troje, N. F. (2010). Limits of peripheral direction of discrimination of point-light walkers. Journal of Vision, 10(2), 1–17. doi:10.1167/10.2.15
Hayfron-Acquah, J. B., Nixon, M. S., & Carter, J. N. (2003). Automatic gait recognition by symmetry analysis. Pattern Recognition Letters, 24(13), 2175–2183. doi:10.1016/S0167-8655(03)00086-2
Hodges, N. J., Hayes, S. J., Breslin, G., & Williams, A. M. (2005). An evaluation of the minimal constraining information during observation for movement reproduction. Acta Psychologica, 119(3), 264–282. doi:10.1016/j.actpsy.2005.02.002
Hoenkamp, E. (1978). Perceptual cues that determine the labelling of human gait. Journal of Human Movement Studies, 4, 59–69.
Huang, P. S., Harris, C. J., & Nixon, M. S. (1999). Recognising humans by gait via parametric canonical space. Artificial Intelligence in Engineering, 13(4), 359–366. doi:10.1016/S0954-1810(99)00008-4
Ikeda, H., Blake, R., & Watanabe, K. (2005). Eccentric perception of biological motion is unscalably poor. Vision Research, 45(15), 1935–1943. doi:10.1016/jvisres.2005.02. 001
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14(2), 201–211. Retrieved from http://link.springer
Johnson, H. M. (2006). Biological motion: A perceptual life detector. Current Biology, 16(10), 376–377. doi:10.1016/j.cub.2006.04.008
Johnson, K. L., & Shiffrar, M. (2013). People watching: Social, perceptual, and neurophysiological studies of body perception. New York: Oxford University Press.
Johnston, L., Hudson, S. M., Richardson, M. J., Gunns, R. E., & Garner, M. (2004). Changing kinematics as a means of reducing vulnerability to physical attack. Journal of Applied Social Psychology, 34(3), 514–537.
Jordan, H., Fallah, M., & Stoner, G. R. (2006). Adaptation of gender derived from biological motion. Nature Neuroscience, 9(6), 738–739. doi:10.1038/nn1710
Kale, A., Sundaresan, A., Rajagopalan, A. N., Cuntoor, N. P., Roy-Chowdhury, A. K., Kruger, V., & Chellappa, R. (2004). Identification of humans using gait. IEEE Transaction on Image Processing, 13(9), 1163–1173. doi:10.1109/TIP.2004.832865
Kim, M. G., Moon, H. M., Chung, Y., & Pan, S. B. (2012). A survey and proposed framework on the soft biometrics technique for human identification in intelligent video surveillance system. Journal of Biomedicine and Biotechnology, 2012(1), 1–7. doi:10.1155/2012/614146
Kozlowski, L. T., & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic point-light display. Perception and Psychophysics, 21(6), 575–580. Retrieved from http://link.springer.com/article/10.3758/BF03198740
Kozlowski, L. T., & Cutting, J. E. (1978). Recognising the gender of walkers from point-lights mounted on ankles: Some second thoughts. Perception and Psychophysics, 23(5), 459. Retrieved from http://link.springer.com/article/10.3758%2FBF03204
Kret, M. E., Pichon, S., Grezes, J., & de Gelder, B. (2011). Similarity and differences in perceiving threat from dynamic faces and bodies. An fMRI study. NeuroImage., 54(2), 1755–1762. doi:10.1016/j.neuroimage.2010.08.012
Kusakunniran, W., Wu, Q., Zhang, J., & Li, H. (2012). Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 42(6), 1654–1668. doi:10.1109/TSMCB.2012.2197823
Lee, T. (2011). Motor control in everyday actions. Champaign, ILL: Human Kinetics.
Little, J. J., & Boyd, J. E. (1998). Recognising people by their gait: The shape of motion. Videre. Journal of Computer Vision Research, 1(2), 1–32. Retrieved from http://www.cs.ubc.ca/labs/lci/papers/docs1998/little-v1n2001.pdf
Liu, Z., & Sarkar, S. (2005). Effect of silhouette quality on hard problems in gait recognition. IEEE Transaction on Systems, Man, and Cybernetics- Part B; Cybernetics, 35(2), 170–183. doi:10.1109/TSMCB.2004.842251
Lu, H. (2010). Structural processing in biological motion perception. Journal of Vision, 10(12), 1–13. doi:10.1167/10.12.13
Mather, G., & Murdoch, L. (1994). Gender discrimination in biological motion displays on dynamic cues. Paper presented at the Proceedings of the Royal Society of London: Series B, 258, 273-279.
Matthews, G., Davies, D. R., Westerman, S. J., & Stammers. (2000). Human performance: Cognition, stress and individual differences. New York, USA: Psychology Press.
Moore, D. G., Hobson, R. P., & Lee, A. (1997). Components of person perception: An investigation with autistic, non-autistic retarded and typically developing children and adolescents. British Journal of Development Psychology., 15(4), 401–423. doi:10.1111/j.2044-835X.1997.tb00738.x
Murray, M. P., Drought, A. B., & Kory, R. C. (1964). Walking patterns of normal men. Journal of Bone and Joint Surgery, 46(2), 335–360. Retrieved from http://jbjs.org
Navarro, M. A., & Schafer, J. R. (2001). Detecting deception. FBI Law Enforcement Bulletin, July, 9–13.
Owens, D. A., Antonoff, R. J., & Francis, E. L. (1994). Biological motion and night-time pedestrian conspicuity. Human Factors, 36(4), 718–732.
Parasumaran, R., de Visser, E., Clarke, E., McGarry, W. R., Hussey, E., Shaw, T., & Thompson, J. C. (2009). Detecting threat-related intentional actions of others: Effects of image quality, response mode, and target cuing on vigilance. Journal of Experimental Psychology: Applied, 15(4), 275–290.
Pavlova, M., Krägeloh-Mann, I., Birbaumer, N., & Sokolov, A. (2002). Biological motion shown backwards: The apparent-facing effect. Perception, 31(4), 435–443. doi:10.1068/p3262
Pavlova, M., Krägeloh-Mann, I., Sokolov, A., & Birbaumer, N. (2001). Recognition of pointlight displays in young children. Perception, 30(8), 925–933. doi:10.1068/p3 157
Pinto, J., & Shiffrar, M. (2009). The visual perception of human and animal motion in point-light displays. Social Neuroscience, 4(4), 332–346. doi:10.1080/17470910 902826820
Pollick, F. E., Lestou, V., Ryu, J., & Cho, S. B. (2002). Estimating the efficiency of recognising gender and affect from biological motion. Vision Research, 42(20), 2345–2355. doi:10.1016/S0042-6989(02)00196-7
Pollick, F. E., Hill, H., Calder, A., & Paterson, H. (2003). Recognising facial expression from spatially and temporally modified movements. Perception, 32(7), 813–826. doi:10.1068/p3319
Quian-Quiroga, R., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435(1), 1102–1107. doi:10.1038/nature03687
Reason, J. (1990). Human error. Cambridge: Cambridge University Press.
Richardson, M. J., & Johnston, L. (2005). Person recognition from dynamic events: The kinematic specification of individual identity walking style. Journal of Nonverbal Behavior, 29(1), 25–44. Retrieved from http://link.springer.com/article/10.1007
Runeson, S., & Frykholm, G. (1981). Visual perception of lifted weight. Perceptual and Motor Skills, 7(4), 733–740. doi:10.1037/0096-1523.7.4.733
Runeson, S., & Frykholm, G. (1983). Kinematic specification of dynamics as an informational basis for person-and-action perception: Expectation, gender, recognition, and deceptive intention. Journal of Experimental Psychology: General, 112(4), 585–615. doi:10.1037/0096-3445.112.4.585
Sayer, J. R., & Mettford, M. L. (2004). High visibility safety apparel and nighttime conspicuity of pedestrians in work zones. Journal of Safety Research, 35(5), 537–546. doi:10.1016/j.jsr.2004.08.007
Sebanz, N., & Shiffrar, M. (2009). Detecting deception in a bluffing body: The role of expertise. Psychonomic Bulletin and Review, 16(1), 170–175.
Shim, J., & Carlton, L. G. (1997). Perception of kinematic characteristics in the motion of lifted weight. Journal of Motor Behavior, 29(2), 131–147. doi:10.1080/00222899709600828
Steel, K. A., Adams, R. D., & Canning, C. G. (2006). Identifying runners as football teammates from 400 msec. video-clips. Perceptual and Motor Skills, 103(1), 901–911. doi:10.2466/pms.103.3.901-911
Steel, K. A., Adams, R. D., & Canning, C. G. (2007). Identifying swimmers as water-polo or swim team-mates from visual displays of less than one second. Journal of Sports Sciences, 25(11), 1251–1258. doi:10.1080/02640410601021721
Steel, K. A., Adams, R. D., & Canning, C. G. (2008). Junior football player’s classification of runners as their team-mates from 400-msec video clips. Perceptual and Motor Skills, 107(1), 317–322. doi:10.2466/PMS.107.1.317-322
Steel, K. A., Adams, R. D., & Canning, C. G. (2012). Liking and response latency in teammate identification: Processing delays below conscious awareness? Perceptual and Motor Skills, 114(2), 519–526. doi:10.2466/05.07.21.pms.114.2.519-526
Steel, K. A., Adams, R. D., Canning, C. G., & Eisenhuth, J. (2010). The Team-Mate Identification (TM-ID) test: Effect of participant and situation familiarity on response accuracy and latency. International Journal of Sport Science and Coaching., 5(2), 281–290. doi:10.1260/1747-9541.5.2.281
Steel, K. A., & Eisenhuth, J. (2012). The team-mate identification (TM-ID) test: A portable apparatus for collecting decision latencies for players in team invasion sports. International Journal of Sports Science and Engineering, 6(3), 159–164. Retrieved from http://www.worldacademicunion.com/journal/SSCI/SSCIvol06no03
Stienen, B. M. C., & de Gelder, B. (2011). Fear detection and visual awareness in perceiving bodily expressions. Emotion, 11(5), 1182–1189. doi:10.1037/a0024032
Stevenage, S. V., Nixon, M. S., & Vince, K. (1999). Visual analysis of gait as a cue to identity. Applied Cognitive Psychology, 13, 513–526. doi:10.1002/1099-0720.13.6.513
Sun, H., & Yuao, T. (2012). Curve aligning approach for gait authentication based on a wearable accelerometer. Physiological Measurement, 33(1), 1111–1120. doi:10.1088/0967-3334/33/6/1111
Tanawongsuwan, R., & Bobick, A. (2001). Gait recognition from time normalized joint-angle trajectories in the walking plane. Paper presented at the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
Thompson, J., & Parasuraman, R. (2012). Attention, biological motion, and action. Neuroimage, 59, 4–13.
Thornton, I. M., Pinto, J., & Shiffrar, M. (1998). The visual perception of human locomotion. Cognitive Neuropsychology, 15(6/7/8), 535–552. doi:10.1080/026432998381014
Tillman, M., & Zacchino, N. (2008). Boots on the ground by dusk: My tribute to Pat Tillman. New York: Rodale Press Inc.
Troje, N. F., Westhoff, C., & Lavrov, M. (2005). Person identification from biological motion: Effects of structural and kinematic cues. Perception and Psychophysics, 67(4), 667–675. Retrieved from http://link.springer.com/article/10.3758/BF0319
Tuttle, S. J., Sayer, J. R., & Buonarosa, M. L. (2009). The conspicuity of first responder safety garments. Journal of Safety Research, 40(3), 191–196. doi:10.1016/j.jsr.2009.03.002
United States Army. (2013).Operational unit diagrams. Retrieved from http://www.army.mil/info/organization/unitsandcommands/oud/
Vinciarelli, A., Pantic, M., & Bourlard, H. (2009). Social signal processing: Survey of an emerging domain. Image and Vision Computing, 27, 1743–1759.
Wang, L., Ning, H., Hu, W., & Tan, T. (2002, September, 22-24). Gait recognition based on Procrustes Shape Analysis. Paper presented at the 9th IEEE International Conference on Image Processing, Rochester, New York.
Wang, L., Tan, T., Ning, H., & Hu, W. (2003). Silhouette analysis-based gait recognition for human identification. IEEE Transaction on Pattern Analysis and Machine Intelligence, 25(12), 1505–1518. doi:10.1109/TPAMI.2003.1251144
Ward, P., Farrow, D., Harris, K., Williams, A. M., Eccles, D. W., & Ericsson, K. A. (2008). Training perceptual-cognitive skills: Can sport psychology research inform military decision training? Military Psychology, 20(Suppl. 1), 71–102. doi:10.1080/08995600701804814
Weissensteiner, J. R., Abernethy, B., Farrow, D., & Gross, J. (2012). Distinguishing psychological characteristics of expert cricket batsmen. Journal of Science and Medicine in Sport, 15(1), 74–79. doi:10.1016/j.jsams.2011.07.003
Whittle, M. (1991). Gait analysis: An introduction. London: Butterworth-Heinemann.
Wood, J. M., Tyrrell, R. A., Marszalek, R. P., Lacherez, P. F., Carberry, T. P., & Chu, B. S. (2011). Using reflective clothing to enhance the conspicuity of bicyclists at night. Accident Analysis Prevention, 45, 726–730. doi:10.1016/j.aap.2011.09.038
Yam, C., Nixon, M. S., & Carter, J. N. (2004). Automated person recognition by walking and running via model based approaches. Pattern Recognition, 37(5), 1057–1072. doi:10.1016/j.patcog.2003.09.012
Yun, J. (2011). User identification using gait patterns on UbiFloorII. Sensors, 11(3), 2611–2639. doi:10.3390/s110302611
Zhang, D., & Jain, A. K. (Eds.) 2006. Advances in biometrics: International conference, Hong Kong, China, (Vol. LNCS 3832). Berlin: Springer.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Steel, K., Ellem, E. & Baxter, D. The application of biological motion research: biometrics, sport, and the military. Psychon Bull Rev 22, 78–87 (2015). https://doi.org/10.3758/s13423-014-0659-5
Published:
Issue Date:
DOI: https://doi.org/10.3758/s13423-014-0659-5