Skip to main content

Melody recognition revisited: influence of melodic Gestalt on the encoding of relational pitch information

Abstract

Melody recognition entails the encoding of pitch intervals between successive notes. While it has been shown that a whole melodic sequence is better encoded than the sum of its constituent intervals, the underlying reasons have remained opaque. Here, we compared listeners’ accuracy in encoding the relative pitch distance between two notes (for example, C, E) of an interval to listeners accuracy under the following three modifications: (1) doubling the duration of each note (C – E –), (2) repetition of each note (C, C, E, E), and (3) adding a preceding note (G, C, E). Repeating (2) or adding an extra note (3) improved encoding of relative pitch distance when the melodic sequences were transposed to other keys, but lengthening the duration (1) did not improve encoding relative to the standard two-note interval sequences. Crucially, encoding accuracy was higher with the four-note sequences than with long two-note sequences despite the fact that sensory (pitch) information was held constant. We interpret the results to show that re-forming the Gestalts of two-note intervals into two-note “melodies” results in more accurate encoding of relational pitch information due to a richer structural context in which to embed the interval.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Bates, D., Maechler, M., Bolker. B., Walker S. (2013). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-5. http://CRAN.R-project.org/package=lme4

  • Bigand, E., Poulin, B., Tillmann, B., Madurell, F., & D'Adamo, D. A. (2003). Sensory versus cognitive components in harmonic priming. Journal of Experimental Psychology-Human Perception and Performance, 29(1), 159–171. doi:10.1037/0096-1523.29.1.159

    Article  PubMed  Google Scholar 

  • Collins, T., Tillmann, B., Barrett, F. S., Delbe, C., & Janata, P. (2014). A combined model of sensory and cognitive representations underlying tonal expectations in music: From audio signals to behavior. Psychological Review, 121(1), 33–65. doi:10.1037/a0034695

    Article  PubMed  Google Scholar 

  • Cuddy, L. L., & Cohen, A. J. (1976). Recognition of transposed melodic sequences. Quarterly Journal of Experimental Psychology, 28(May), 255–270.

    Article  Google Scholar 

  • Deutsch, D. (1969). Music recognition. Psychological Review, 76(3), 300–307.

    Article  PubMed  Google Scholar 

  • Dowling, W. J. (1986). Context effects on melody recognition - scale-step versus interval representations. Music Perception, 3(3), 281–296.

    Article  Google Scholar 

  • Dowling, W. J., Bartlett, J. C., Halpern, A. R., & Andrews, M. W. (2008). Melody recognition at fast and slow tempos: Effects of age, experience, and familiarity. Perception & Psychophysics, 70(3), 496–502. doi:10.3758/Pp.70.3.496

    Article  Google Scholar 

  • Edworthy, J. (1985). Interval and contour in melody processing. Music Perception, 2(3), 375–388.

    Article  Google Scholar 

  • Enns, J. T., & Prinzmetal, W. (1984). The role of redundancy in the object-line effect. Perception & Psychophysics, 35(1), 22–32.

    Article  Google Scholar 

  • Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards Logit Mixed Models. Journal of Memory and Language, 59(4), 434–446. doi:10.1016/j.jml.2007.11.007

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones, M. R. (1976). Time, our lost dimension - toward a new theory of perception, attention, and memory. Psychological Review, 83(5), 323–355.

    Article  PubMed  Google Scholar 

  • Jones, M. R., Moynihan, H., MacKenzie, N., & Puente, J. (2002). Temporal aspects of stimulus-driven attending in dynamic arrays. Psychological Science, 13(4), 313–319.

    Article  PubMed  Google Scholar 

  • Koelsch, S., & Siebel, W. A. (2005). Towards a neural basis of music perception. Trends in Cognitive Sciences, 9(12), 578–584. doi:10.1016/j.tics.2005.10.001

    Article  PubMed  Google Scholar 

  • Krumhansl, C. L. (1990). Cognitive foundations of musical pitch. New York: Oxford University Press.

    Google Scholar 

  • Kubovy, M., & Van Valkenburg, D. (2001). Auditory and visual objects. [Research Support, U.S. Gov't, P.H.S. Review]. Cognition, 80(1-2), 97–126.

    Article  PubMed  Google Scholar 

  • Leman, M. (2000). An auditory model of the role of short-term memory in probe-tone ratings. Music Perception, 17(4), 481–509.

    Article  Google Scholar 

  • Mcclelland, J. L. (1978). Perception and masking of wholes and parts. Journal of Experimental Psychology-Human Perception and Performance, 4(2), 210–223.

    Article  PubMed  Google Scholar 

  • Neuhaus, C., & Knösche, T. R. (2006). Processing of rhythmic and melodic gestalts—An ERP study. Music Perception, 24(2), 209–222. doi:10.1525/Mp.2006.24.2.209

  • Plantinga, J., & Trainor, L. J. (2005). Memory for melody: Infants use a relative pitch code. Cognition, 98(1), 1–11. doi:10.1016/J.Cognition.2004.09.008

    Article  PubMed  Google Scholar 

  • Richler, J. J., Cheung, O. S., & Gauthier, I. (2011). Holistic processing predicts face recognition. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Psychological Science, 22(4), 464–471. doi:10.1177/0956797611401753

    Article  PubMed Central  PubMed  Google Scholar 

  • Schindler, A., Herdener, M., & Bartels, A. (2012). Coding of melodic Gestalt in human auditory cortex. Cerebral Cortex. doi:10.1093/cercor/bhs289

    PubMed Central  PubMed  Google Scholar 

  • Stewart, L., Overath, T., Warren, J. D., Foxton, J. M., & Griffiths, T. D. (2008). fMRI evidence for a cortical hierarchy of pitch pattern processing. [Research Support, Non-U.S. Gov't]. PloS One, 3(1), e1470. doi:10.1371/journal.pone.0001470

    Article  PubMed Central  PubMed  Google Scholar 

  • Trainor, L. J., McDonald, K. L., & Alain, C. (2002). Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. Journal of Cognitive Neuroscience, 14(3), 430–442. doi:10.1162/089892902317361949

    Article  PubMed  Google Scholar 

  • Warrier, C. M., & Zatorre, R. J. (2002). Influence of tonal context and timbral variation on perception of pitch. [Research Support, Non-U.S. Gov't]. Perception & Psychophysics, 64(2), 198–207.

    Article  Google Scholar 

  • Williams, A., & Weisstein, N. (1978). Line segments are perceived better in a coherent context than alone - object-line effect in visual-perception. Memory & Cognition, 6(2), 85–90.

    Article  Google Scholar 

  • Winter, B. (2013). Linear models and linear mixed effects models in R with linguistic applications. arXiv:1308.5499. [http://arxiv.org/pdf/1308.5499.pdf]

Download references

Acknowledgments

The authors would like to thank Cory Kendrick, Kevin Miller, and Samuel Lloyd for their great help on data collection. We thank Bodo Winter for providing the helpful tutorial on the linear mixed effects modeling in R and his advice on the analysis for our study via personal communication with us. Yune-Sang Lee’s special thanks go to Prof. Jay Hull for his enormous and unconditional help on other statistical analyses. Lastly, we are truly grateful to the reviewing editor—Dr. Bob McMurray—and two anonymous reviewers for their great comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yune-Sang Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, YS., Janata, P., Frost, C. et al. Melody recognition revisited: influence of melodic Gestalt on the encoding of relational pitch information. Psychon Bull Rev 22, 163–169 (2015). https://doi.org/10.3758/s13423-014-0653-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-014-0653-y

Keywords

  • Music
  • Melody
  • Gestalt
  • Interval
  • Pitch
  • Recognition