Time-based forgetting in visual working memory reflects temporal distinctiveness, not decay

Abstract

Is forgetting from working memory (WM) better explained by decay or interference? The answer to this question is the topic of an ongoing debate. Recently, a number of studies showed that performance in tests of visual WM declines with an increasing unfilled retention interval. This finding was interpreted as revealing decay. Alternatively, it can be explained by interference theories as an effect of temporal distinctiveness. According to decay theories, forgetting depends on the absolute time elapsed since the event to be retrieved. In contrast, temporal distinctiveness theories predict that memory depends on relative time, that is, the time since the to-be-retrieved event relative to the time since other, potentially interfering events. In the present study, we contrasted the effects of absolute time and relative time on forgetting from visual WM, using a continuous color recall task. To this end, we varied the retention interval and the inter-trial interval. The error in reporting the target color was a function of the ratio of the retention interval to the inter-trial interval, as predicted by temporal distinctiveness theories. Mixture modeling revealed that lower temporal distinctiveness produced a lower probability of reporting the target, but no changes in its precision in memory. These data challenge the role of decay in accounting for performance in tests of visual WM, and show that the relative spacing of events in time determines the degree of interference.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    To estimate the necessary response time (RT) that would roughly equate the distinctiveness of the short and long RIs, we used RT estimations based on our previous experience with tasks in which similar retention intervals were used.

  2. 2.

    We used the BayesFactor package (v.0.9.5; R. D. Morey & Rouder, 2013) implemented in R. The anovaBF function was used with its default settings (“medium” prior scale for fixed effects, and “nuisance” prior scale for the random effect).

References

  1. Barrouillet, P., & Camos, V. (2012). As time goes by temporal constraints in working memory. Current Directions in Psychological Science, 21, 413–419. doi:10.1177/0963721412459513

    Article  Google Scholar 

  2. Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9, 1–11. doi:10.1167/9.10.7

    PubMed  Article  Google Scholar 

  3. Berman, M. G., Jonides, J., & Lewis, R. L. (2009). In search of decay in verbal short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 317–333. doi:10.1037/a0014873

    PubMed Central  PubMed  Google Scholar 

  4. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. doi:10.1163/156856897X00357

    PubMed  Article  Google Scholar 

  5. Brown, G. D. A., Neath, I., & Chater, N. (2007). A temporal ratio model of memory. Psychological Review, 114, 539–576. doi:10.1037/0033-295X.114.3.539

    PubMed  Article  Google Scholar 

  6. Burgess, N., & Hitch, G. J. (2006). A revised model of short-term memory and long-term learning of verbal sequences. Journal of Memory and Language, 55, 627–652. doi:10.1016/j.jml.2006.08.005

    Article  Google Scholar 

  7. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114.

    PubMed  Article  Google Scholar 

  8. Jalbert, A., Neath, I., Bireta, T. J., & Surprenant, A. M. (2011). When does length cause the word length effect? Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 338–353. doi:10.1037/a0021804

    PubMed  Google Scholar 

  9. Lewandowsky, S., & Farrell, S. (2008). Short-term memory: New data and a model. Psychology of Learning and Motivation, 49, 1–48.

    Article  Google Scholar 

  10. Lewandowsky, S., Geiger, S. M., Morrell, D. B., & Oberauer, K. (2010). Turning simple span into complex span: Time for decay or interference from distractors? Journal of Experimental Psychology: Learning, Memory and Cognition, 36, 958–978.

    Google Scholar 

  11. Morey, C. C., & Bieler, M. (2013). Visual short-term memory always requires general attention. Psychonomic Bulletin & Review, 20, 163–170. doi:10.3758/s13423-012-0313-z

    Article  Google Scholar 

  12. Morey, R. D., & Rouder, J. N. (2013). BayesFactor (Version 0.9.5). Retrieved from http://bayesfactorpcl.r-forge.r-project.org/

  13. Nairne, J. S. (1990). A feature model of immediate memory. Memory & Cognition, 18(3), 251–269. doi:10.3758/BF03213879

  14. Nairne, J. S. (2002). Remembering over the short-term: The case against the standard model. Annual Review of Psychology, 53, 53–81. doi:10.1146/annurev.psych.53.100901.135131

    PubMed  Article  Google Scholar 

  15. Oberauer, K., & Lewandowsky, S. (2008). Forgetting in immediate serial recall: Decay, temporal distinctiveness, or interference? Psychological Review, 115, 544–576. doi:10.1037/0033-295X.115.3.544

    PubMed  Article  Google Scholar 

  16. Oberauer, K., & Lewandowsky, S. (2013). Evidence against decay in verbal working memory. Journal of Experimental Psychology: General, 142, 380–411. doi:10.1037/a0029588

    Article  Google Scholar 

  17. Oberauer, K., Lewandowsky, S., Farrell, S., Jarrold, C., & Greaves, M. (2012). Modeling working memory: an interference model of complex span. Psychonomic Bulletin & Review, 19, 779–819. doi:10.3758/s13423-012-0272-4

    Article  Google Scholar 

  18. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437–442. doi:10.1163/156856897X00366

    PubMed  Article  Google Scholar 

  19. Pertzov, Y., Bays, P. M., Joseph, S., & Husain, M. (2013). Rapid forgetting prevented by retrospective attention cues. Journal of Experimental Psychology: Human Perception and Performance, 39, 1224–1231. doi:10.1037/a0030947

    PubMed Central  PubMed  Google Scholar 

  20. Prinzmetal, W., Amiri, H., Allen, K., & Edwards, T. (1998). Phenomenology of attention: I. Color, location, orientation, and spatial frequency. Journal of Experimental Psychology: Human Perception and Performance, 24, 261–282. doi:10.1037/0096-1523.24.1.261

    Google Scholar 

  21. Ricker, T. J., & Cowan, N. (2010). Loss of visual working memory within seconds: The combined use of refreshable and non-refreshable features. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 1355–1368. doi:10.1037/a0020356

    PubMed Central  PubMed  Google Scholar 

  22. Ricker, T. J., & Cowan, N. (2014). Differences between presentation methods in working memory procedures: A matter of working memory consolidation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40, 417–428. doi:10.1037/a0034301

    PubMed  Google Scholar 

  23. Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56, 356–374. doi:10.1016/j.jmp.2012.08.001

    Article  Google Scholar 

  24. Shipstead, Z., & Engle, R. W. (2013). Interference within the focus of attention: Working memory tasks reflect more than temporary maintenance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 277–289. doi:10.1037/a0028467

    PubMed  Google Scholar 

  25. White, K. G. (2012). Dissociation of short-term forgetting from the passage of time. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 255–259. doi:10.1037/a0025197

    PubMed  Google Scholar 

  26. Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120–1135. doi:10.1167/4.12.11

    PubMed  Article  Google Scholar 

  27. Woodman, G. F., Vogel, E. K., & Luck, S. J. (2012). Flexibility in visual working memory: Accurate change detection in the face of irrelevant variations in position. Visual Cognition, 20, 1–28. doi:10.1080/13506285.2011.630694

    PubMed Central  PubMed  Article  Google Scholar 

  28. Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233–235. doi:10.1038/nature06860

    PubMed Central  PubMed  Article  Google Scholar 

  29. Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20, 423–428. doi:10.1111/j.1467-9280.2009.02322.x

    PubMed Central  PubMed  Article  Google Scholar 

Download references

Author Notes

This research was supported by grants from the Forschungskredit from the University of Zurich (project FK-13-083) to Alessandra S. Souza, and from the Swiss National Science Foundation (project 100014_149193) to Klaus Oberauer. We thank Stefanie Colaço for collecting the data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alessandra S. Souza.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Souza, A.S., Oberauer, K. Time-based forgetting in visual working memory reflects temporal distinctiveness, not decay. Psychon Bull Rev 22, 156–162 (2015). https://doi.org/10.3758/s13423-014-0652-z

Download citation

Keywords

  • Visual working memory
  • Forgetting
  • Decay
  • Temporal distinctiveness