Psychonomic Bulletin & Review

, Volume 21, Issue 6, pp 1473–1480 | Cite as

Face-specific capacity limits under perceptual load do not depend on holistic processing

  • Volker ThomaEmail author
Brief Report


Previous observations that face recognition may proceed automatically, without drawing on attentional resources, have been challenged by recent demonstrations that only a few faces can be processed at one time. However, a question remains about the nature of the stimulus properties that underlie face-specific capacity limits. Two experiments showed that speeded categorization of a famous face (such as a politician or pop star) is facilitated when it is congruent with a peripheral distractor face. This congruency effect is eliminated if the visual search is loaded with more than one face, unlike previous demonstrations of speeded classification using semantic information. Importantly, congruency effects are also eliminated when the search task is loaded with nontarget faces that are shown in an inverted orientation. These results indicate that face-specific capacity limits are not determined by the configural (“holistic”) properties of face recognition.


Attention Face perception Face recognition Visual search Capacity limitations Modularity 


Author note

I thank two anonymous reviewers for their valuable comments, and Dr. Rob Jenkins for help with the original stimuli.


  1. Adlington, R. L., & Rhodes, G. (2002). The influence of divided attention on holistic face perception. Cognition, 82, 225–257.CrossRefGoogle Scholar
  2. Cheung, O. S., Richler, J. J., Palmeri, T. J., & Gauthier, I. (2008). Revisiting the role of spatial frequencies in the holistic processing of faces. Journal of Experimental Psychology: Human Perception and Performance, 34, 1327–1336. doi: 10.1037/a0011752 PubMedGoogle Scholar
  3. Costen, N. P., Parker, D. M., & Craw, I. (1996). Effects of high-pass and low-pass spatial filtering on face identification. Perception & Psychophysics, 58, 602–612.CrossRefGoogle Scholar
  4. De Valois, R. L., & De Valois, K. K. (1980). Spatial vision. Annual Review of Psychology, 31, 309–341. doi: 10.1146/ PubMedCrossRefGoogle Scholar
  5. Diamond, R., & Carey, S. (1986). Why faces, are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115, 107–117. doi: 10.1037/0096-3445.115.2.107 CrossRefGoogle Scholar
  6. Farah, M. J., Wilson, K.-D., Drain, H. M., & Tanaka, J. R. (1995). The inverted face inversion effect in prosopagnosia: Evidence for mandatory, face-specific perceptual mechanisms. Vision Research, 35, 2089–2093.PubMedCrossRefGoogle Scholar
  7. Farah, M. J., Wilson, K.-D., Drain, M., & Tanaka, J. N. (1998). What is “special” about face perception? Psychological Review, 105, 482–498. doi: 10.1037/0033-295X.105.3.482 PubMedCrossRefGoogle Scholar
  8. Fodor, J. (1983). Modularity of mind: An essay on faculty psychology. Cambridge: MIT Press.Google Scholar
  9. Gaspar, C. M., Bennett, P. J., & Sekuler, A. B. (2008). The effects of face inversion and contrast-reversal on efficiency and internal noise. Vision Research, 48, 1084–1095. doi: 10.1016/j.visres.2007.12.014 PubMedCrossRefGoogle Scholar
  10. Gauthier, I., Behrmann, M., & Tarr, M. J. (1999). Can face recognition really be dissociated from object recognition? Journal of Cognitive Neuroscience, 11, 349–370.PubMedCrossRefGoogle Scholar
  11. Gobbini, M. I., & Haxby, J. V. (2006). Neural response to the visual familiarity of faces. Brain Research Bulletin, 71, 76–82. doi: 10.1016/j.brainresbull.2006.08.003 PubMedCrossRefGoogle Scholar
  12. Gold, J. M., Mundy, P. J., & Tjan, B. S. (2012). The perception of a face is no more than the sum of its parts. Psychological Science, 23, 427–434. doi: 10.1177/0956797611427407 PubMedCentralPubMedCrossRefGoogle Scholar
  13. Jenkins, R., Lavie, N., & Driver, J. (2003). Ignoring famous faces: Category-specific dilution of distractor interference. Perception & Psychophysics, 65, 298–309.CrossRefGoogle Scholar
  14. Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3, 759–763. doi: 10.1038/77664 PubMedCrossRefGoogle Scholar
  15. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302–4311.PubMedGoogle Scholar
  16. Kuehn, S. M., & Jolicœur, P. (1994). Impact of quality of the image, orientation, and similarity of the stimuli on visual search for faces. Perception, 23, 95–122. doi: 10.1068/p230095 PubMedCrossRefGoogle Scholar
  17. Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451–468. doi: 10.1037/0096-1523.21.3.451 PubMedGoogle Scholar
  18. Lavie, N., Ro, T., & Russell, C. (2003). The role of perceptual load in processing distractor faces. Psychological Science, 14, 510–515.PubMedCrossRefGoogle Scholar
  19. Lavie, N., Lin, Z., Zokaei, N., & Thoma, V. (2009). The role of perceptual load in object recognition. Journal of Experimental Psychology: Human Perception and Performance, 35, 1346–1358. doi: 10.1037/a0016454 PubMedCentralPubMedGoogle Scholar
  20. Maurer, D., Grand, R. L., & Mondloch, C. J. (2002). The many faces of configural processing. Trends in Cognitive Sciences, 6, 255–260.PubMedCrossRefGoogle Scholar
  21. McCarthy, G., Puce, A., Gore, J. C., & Allison, T. (1997). Face-specific processing in the human fusiform gyrus. Journal of Cognitive Neuroscience, 9, 605–610. doi: 10.1162/jocn.1997.9.5.605 PubMedCrossRefGoogle Scholar
  22. Morton, J., & Johnson, M. H. (1991). CONSPEC and CONLERN: A two-process theory of infant face recognition. Psychological Review, 98, 164–181.PubMedCrossRefGoogle Scholar
  23. Neumann, M. F., Mohamed, T. N., & Schweinberger, S. R. (2011). Face and object encoding under perceptual load: ERP evidence. NeuroImage, 54, 3021–3027. doi: 10.1016/j.neuroimage.2010.10.075 PubMedCrossRefGoogle Scholar
  24. Palermo, R., & Rhodes, G. (2007). Are you always on my mind? A review of how face perception and attention interact. Neuropsychologia, 45, 75–92. doi: 10.1016/j.neuropsychologia.2006.04.025 PubMedCrossRefGoogle Scholar
  25. Puce, A., Allison, T., Gore, J. C., & McCarthy, G. (1995). Face-sensitive regions in human extrastriate cortex studied by functional MRI. Journal of Neurophysiology, 74, 1192–1199.PubMedGoogle Scholar
  26. Riesenhuber, M., & Wolff, B. S. (2009). Task effects, performance levels, features, configurations, and holistic face processing: A reply to Rossion. Acta Psychologica, 132, 286–292. doi: 10.1016/j.actpsy.2009.07.004 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Rossion, B. (2008). Picture-plane inversion leads to qualitative changes of face perception. Acta Psychologica, 128, 274–289. doi: 10.1016/j.actpsy.2008.02.003 PubMedCrossRefGoogle Scholar
  28. Rotshtein, P., Vuilleumier, P., Winston, J., Driver, J., & Dolan, R. (2007). Distinct and convergent visual processing of high and low spatial frequency information in faces. Cerebral Cortex, 17, 2713–2724. doi: 10.1093/cercor/bhl180 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Schneider, W., & Chein, J. M. (2003). Controlled & automatic processing: Behavior, theory, and biological mechanisms. Cognitive Science, 27, 525–559. doi: 10.1207/s15516709cog2703_8 CrossRefGoogle Scholar
  30. Schwaninger, A., Lobmaier, J. S., Wallraven, C., & Collishaw, S. (2009). Two routes to face perception: Evidence from psychophysics and computational modeling. Cognitive Science, 33, 1413–1440. doi: 10.1111/j.1551-6709.2009.01059.x PubMedCrossRefGoogle Scholar
  31. Searcy, J. H., & Bartlett, J. C. (1996). Inversion and processing of component and spatial– relational information in faces. Journal of Experimental Psychology: Human Perception and Performance, 22, 904–915.PubMedGoogle Scholar
  32. Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. Quarterly Journal of Experimental Psychology, 46A, 225–245.CrossRefGoogle Scholar
  33. Thoma, V., & Lavie, N. (2013). Perceptual load effects on processing distractor faces indicate face-specific capacity limits. Visual Cognition, 21, 1053–1076. doi: 10.1080/13506285.2013.853717 CrossRefGoogle Scholar
  34. Thoma, V., Hummel, J. E., & Davidoff, J. (2004). Evidence for holistic representations of ignored images and analytic representations of attended images. Journal of Experimental Psychology: Human Perception and Performance, 30, 257–267. doi: 10.1037/0096-1523.30.2.257 PubMedGoogle Scholar
  35. Tsal, Y., & Benoni, H. (2010). Diluting the burden of load: Perceptual load effects are simply dilution effects. Journal of Experimental Psychology: Human Perception and Performance, 36, 1645–1656. doi: 10.1037/a0018172 PubMedGoogle Scholar
  36. Wilson, D. E., Muroi, M., & MacLeod, C. M. (2011). Dilution, not load, affects distractor processing. Journal of Experimental Psychology: Human Perception and Performance, 37, 319–335. doi: 10.1037/a0021433 PubMedGoogle Scholar
  37. Wojciulik, E., Kanwisher, N., & Driver, J. (1998). Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. Journal of Neurophysiology, 79, 1574–1578.PubMedGoogle Scholar
  38. Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81, 141–145. doi: 10.1037/h0027474 CrossRefGoogle Scholar
  39. Young, A. W., Ellis, A. W., Flude, B. M., McWeeny, K. H., & Hay, D. C. (1986). Face–name interference. Journal of Experimental Psychology: Human Perception and Performance, 12, 466–475. doi: 10.1037/0096-1523.12.4.466 PubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2014

Authors and Affiliations

  1. 1.School of PsychologyUniversity of East LondonLondonUK

Personalised recommendations