More complex brains are not always better: rats outperform humans in implicit category-based generalization by implementing a similarity-based strategy

Abstract

Generalization from previous experiences to new situations is a hallmark of intelligent behavior and a prerequisite for category learning. It has been proposed that category learning in humans relies on multiple brain systems that compete with each other, including an explicit, rule-based system and an implicit system. Given that humans are biased to follow rule-based strategies, a counterintuitive prediction of this model is that other animals, in which this rule-based system is less developed, might generalize better to new stimuli in implicit category-learning tasks that are not rule-based. To test this prediction, rats and humans were trained in rule-based and information-integration category-learning tasks with visual stimuli. The generalization performance of rats and humans was equal in rule-based categorization, but rats outperformed humans on generalization in the information-integration task. The performance of rats was consistent with a nondimensional, similarity-based categorization strategy. These findings illustrate through a comparative approach that the bias toward rule-based strategies can impede humans’ performance on generalization tasks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Waldron, E. M. (1998). A neuropsychological theory of multiple systems in category learning. Psychological Review, 105, 442–481. doi:10.1037/0033-295X.105.3.442

    PubMed  Article  Google Scholar 

  2. Ashby, F. G., Ell, S. W., & Waldron, E. M. (2003). Procedural learning in perceptual categorization. Memory & Cognition, 31, 1114–1125. doi:10.3758/BF03196132

    Article  Google Scholar 

  3. Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149–178. doi:10.1146/annurev.psych.56.091103.070217

    PubMed  Article  Google Scholar 

  4. Burne, R. A., Parnavelas, J. G., & Lin, C. S. (1984). Response properties of neurons in the visual cortex of the rat. Experimental Brain Research, 53, 374–383.

    PubMed  Article  Google Scholar 

  5. Filoteo, J. V., Lauritzen, S., & Maddox, W. T. (2010). Removing the frontal lobes: The effects of engaging executive functions on perceptual category learning. Psychological Science, 21, 415–423.

    PubMed Central  PubMed  Article  Google Scholar 

  6. Girman, S. V., Sauvé, Y., & Lund, R. D. (1999). Receptive field properties of single neurons in rat primary visual cortex. Journal of Neurophysiology, 82, 301–311.

    PubMed  Google Scholar 

  7. Hélie, S., Waldschmidt, J. G., & Ashby, F. G. (2010). Automaticity in rule-based and information-integration categorization. Attention, Perception, & Psychophysics, 72, 1013–1031. doi:10.3758/APP.72.4.1013

    Article  Google Scholar 

  8. Jitsumori, M. (1993). Category discrimination of artificial polymorphous stimuli based on feature learning. Journal of Experimental Psychology: Animal Behavior Processes, 19, 244–254. doi:10.1037/0097-7403.19.3.244

    Google Scholar 

  9. Maddox, W. T., Ashby, F. G., & Bohil, C. J. (2003). Delayed feedback effects on rule-based and information-integration category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 650–662. doi:10.1037/0278-7393.29.4.650

    PubMed  Google Scholar 

  10. Miller, W., Rosenbloom, K., Hardison, R. C., Hou, M., Taylor, J., Raney, B., & Kent, W. J. (2007). 28-way vertebrate alignment and conservation track in the UCSC Genome Browser. Genome Research, 17, 1797–1808. doi:10.1101/gr.6761107

    PubMed Central  PubMed  Article  Google Scholar 

  11. Niell, C. M., & Stryker, M. P. (2008). Highly selective receptive fields in mouse visual cortex. Journal of Neuroscience, 28, 7520–7536. doi:10.1523/JNEUROSCI.0623-08.2008

    PubMed Central  PubMed  Article  Google Scholar 

  12. Nishihara, H., Hasegawa, M., & Okada, N. (2006). Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proceedings of the National Academy of Sciences, 103, 9929–9934.

    Article  Google Scholar 

  13. Nosofsky, R. M. (1986). Attention, similarity, and the identification–categorization relationship. Journal of Experimental Psychology: General, 115, 39–57. doi:10.1037/0096-3445.115.1.39

    Article  Google Scholar 

  14. Ohki, K., Chung, S., Ch’ng, Y. H., Kara, P., & Reid, R. C. (2005). Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature, 433, 597–603.

    PubMed  Article  Google Scholar 

  15. Prusky, G. T., West, P. W., & Douglas, R. M. (2000). Behavioral assessment of visual acuity in mice and rats. Vision Research, 40, 2201–2209.

    PubMed  Article  Google Scholar 

  16. Shepard, R. N. (1987). Toward a universal law of generalization for psychological science. Science, 237, 1317–1323. doi:10.1126/science.3629243

    PubMed  Article  Google Scholar 

  17. Silveira, L. C., Heywood, C. A., & Cowey, A. (1987). Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically. Vision Research, 27, 1719–1731.

    PubMed  Article  Google Scholar 

  18. Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University Press.

    Google Scholar 

  19. Smith, J. D., Ashby, F. G., Berg, M. E., Murphy, M. S., Spiering, B. J., Cook, R. G., & Grace, R. C. (2011). Pigeons’ categorization may be exclusively nonanalytic. Psychonomic Bulletin & Review, 18, 414–421. doi:10.3758/s13423-010-0047-8

    Article  Google Scholar 

  20. Smith, J. D., Beran, M. J., Crossley, M. J., Boomer, J., & Ashby, F. G. (2010). Implicit and explicit category learning by macaques (Macaca mulatta) and humans (Homo sapiens). Journal of Experimental Psychology: Animal Behavior Processes, 36, 54–65.

    PubMed Central  PubMed  Google Scholar 

  21. Smith, J. D., Minda, J. P., & Washburn, D. A. (2004). Category learning in rhesus monkeys: A study of the Shepard, Hovland, and Jenkins (1961) tasks. Journal of Experimental Psychology: General, 133, 398–414. doi:10.1037/0096-3445.133.3.398

    Article  Google Scholar 

  22. Uylings, H. B., Groenewegen, H. J., & Kolb, B. (2003). Do rats have a prefrontal cortex? Behavioural Brain Research, 146, 3–17.

    PubMed  Article  Google Scholar 

  23. Visser, I., & Raijmakers, M. E. (2012). Developing representations of compound stimuli. Frontiers in Psychology, 3, 73. doi:10.3389/fpsyg.2012.00073

    PubMed Central  PubMed  Article  Google Scholar 

  24. Vogels, R. (1999). Categorization of complex visual images by rhesus monkeys. Part 1: Behavioural study. European Journal of Neuroscience, 11, 1223–1238.

    PubMed  Article  Google Scholar 

  25. Wong, A. A., & Brown, R. E. (2006). Visual detection, pattern discrimination and visual acuity in 14 strains of mice. Genes, Brain and Behavior, 5, 389–403. doi:10.1111/j.1601-183X.2005.00173.x

    Article  Google Scholar 

Download references

Author note

This research was supported by Grant Nos. G.0819.11, G.0562.10, and GOA/12/008. B.V. is currently a postdoctoral fellow of the Research Foundation Flanders.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ben Vermaercke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.06 mb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vermaercke, B., Cop, E., Willems, S. et al. More complex brains are not always better: rats outperform humans in implicit category-based generalization by implementing a similarity-based strategy. Psychon Bull Rev 21, 1080–1086 (2014). https://doi.org/10.3758/s13423-013-0579-9

Download citation

Keywords

  • Animal behavior
  • Categorization
  • Implicit/explicit cognition
  • Visual perception