Skip to main content

Language statistics explain the spatial–numerical association of response codes

Abstract

The spatial–numerical association of response codes (SNARC) has shown that parity judgments with participants’ left hands yield faster response times (RTs) for smaller numbers than for larger numbers, with the opposite result for right-hand responses. These findings have been explained by participants perceptually simulating magnitude on a mental number line. In three RT experiments, we showed that the SNARC effect can also be explained by language statistics. Participants made parity judgments of number words (Exp. 1) and Arabic numerals (Exp. 2). Linguistic frequencies of the number words and numbers mirrored the SNARC effect, explaining aspects of processing that a perceptual simulation account could not. In Experiment 3, we investigated whether high- and low-frequency nonnumerical words would also elicit a SNARC-like effect. Again, RTs were faster for high-frequency words for left-hand responses, with the opposite result for right-hand responses. These results demonstrate that what has only been attributed to perceptual simulation should also be attributed to language statistics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    The same analysis, but using the mean RT per number word (or numeral) per response side per participant, so that mean (rather than median) left-hand responses were subtracted from the mean right-hand responses, yielded similar results for all three experiments, as can be seen in the following table.

      Exp. 1 Exp. 2 Exp. 3
    df F df F df F
    Magnitude 5817 1.01 4973 0.1   
    Frequency 5588 0.18 4973 2.37 1856 3.24
    Response Side × Magnitude 5817 12.52** 4973 13.88**   
    Frequency × Magnitude 5586 8.67** 4973 14.6** 1856 7.33**
    Bigram Frequency × Response Side 3082 13.77** 2098 18.34**   
    1. ** p < .01
  2. 2.

    The same analysis when 0 was excluded yielded nonsignificant main effects of response side, F(1, 4408) = 0.26, p = .61, R 2 = .005, and frequency, F(1, 4408) = 0.24, p = .62, R 2 = .005, but a significant interaction between response side and magnitude, F(1, 4408) = 17.14, p < .001, R 2 = .32.

References

  1. Andres, M., Ostry, D., Nicol, F., & Paus, T. (2008). Time course of number magnitude interference during grasping. Cortex, 44, 414–419.

    PubMed  Article  Google Scholar 

  2. Baayen, R. H. (2001). Word frequency distributions. Dordrecht: Kluwer.

    Book  Google Scholar 

  3. Brants, T., & Franz, A. (2006). Web 1T 5-gram version 1. Philadelphia: Linguistic Data Consortium, University of Pennsylvania.

    Google Scholar 

  4. Chomsky, N., & Halle, M. (1968). The sound pattern of English. New York: Harper & Row.

    Google Scholar 

  5. Damian, M. F. (2004). Asymmetries in the processing of Arabic digits and number words. Memory & Cognition, 32, 164–171.

    Article  Google Scholar 

  6. Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology. General, 122, 371–396. doi:10.1037/0096-3445.122.3.371

    Article  Google Scholar 

  7. Dehaene, S., & Mehler, J. (1992). Cross-linguistic regularities in the frequency of number words. Cognition, 43, 1–29.

    PubMed  Article  Google Scholar 

  8. Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research, 65, 250–259. doi:10.1007/s004260100065

    PubMed  Article  Google Scholar 

  9. Fischer, M. H., & Brugger, P. (2011). When digits help digits: Spatial–numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2, 1–7.

    Article  Google Scholar 

  10. Fischer, M. H., Shaki, S., & Cruise, A. (2009). It takes just one word to quash a SNARC. Quarterly Journal of Experimental Psychology, 56, 361–366.

    Google Scholar 

  11. Gevers, W., Caessens, B., & Fias, W. (2005). Towards a common processing architecture underlying Simon and SNARC effects. European Journal of Cognitive Psychology, 17, 659–673.

    Article  Google Scholar 

  12. Gevers, W., Reynvoet, B., & Fias, W. (2003). The mental representation of ordinal sequences is spatially organized. Cognition, 87, B87–B95.

    PubMed  Article  Google Scholar 

  13. Greenberg, J. H. (1966). Language universals, with special reference to feature hierarchies. The Hague: Mouton.

    Google Scholar 

  14. Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32, 662–673. doi:10.3758/BF03195857

    Article  Google Scholar 

  15. Littell, R. C., Stroup, W. W., & Freund, R. J. (2002). SAS for linear models. Cary: SAS Institute.

    Google Scholar 

  16. Louwerse, M. M. (2008). Embodied relations are encoded in language. Psychonomic Bulletin & Review, 15, 838–844. doi:10.3758/PBR.15.4.838

    Article  Google Scholar 

  17. Louwerse, M. M. (2011). Symbol interdependency in symbolic and embodied cognition. Topics in Cognitive Science, 3, 273–302. doi:10.1111/j.1551-6709.2010.01157.x

    Article  Google Scholar 

  18. Louwerse, M. M., & Jeuniaux, P. (2010). The linguistic and embodied nature of conceptual processing. Cognition, 114, 96–104. doi:10.1016/j.cognition.2009.09.002

    PubMed  Article  Google Scholar 

  19. Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. Quarterly Journal of Experimental Psychology, 57A, 835–863. doi:10.1080/02724980343000512

    Article  Google Scholar 

  20. Pecher, D., & Zwaan, R. A. (Eds.). (2005). Grounding cognition: The role of perception and action in memory. New York: Cambridge University Press.

    Google Scholar 

  21. Pinhas, M., & Tzelgov, J. (2012). Expanding on the mental number line: Zero is perceived as the “smallest. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1187–1205.

    PubMed  Google Scholar 

  22. Proctor, R. W., & Cho, Y. S. (2006). Polarity correspondence: A general principle for performance of speeded binary classification tasks. Psychological Bulletin, 132, 416–442. doi:10.1037/0033-2909.132.3.416

    PubMed  Article  Google Scholar 

  23. Ren, P., Nicholls, M. E. R., Ma, Y., & Chen, L. (2011). Size matters: Non-numerical magnitude affects the spatial coding of response. PLoS One, 6, e23553. doi:10.1371/journal.pone.0023553

    PubMed Central  PubMed  Article  Google Scholar 

  24. Restle, F. (1970). Speed of adding and comparing numbers. Journal of Experimental Psychology, 83, 274–278. doi:10.1037/h0028573

    Article  Google Scholar 

  25. Reynvoet, B., & Brysbaert, M. (1999). Single-digit and two-digit Arabic numerals address the same semantic number line. Cognition, 72, 191–201. doi:10.1016/S0010-0277(99)00048-7

    PubMed  Article  Google Scholar 

  26. Semin, G. R., & Smith, E. R. (Eds.). (2008). Embodied grounding. Social, cognitive, affective, and neuroscientific approaches. New York: Cambridge University Press.

    Google Scholar 

  27. Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16, 328–331. doi:10.3758/PBR.16.2.328

    Article  Google Scholar 

  28. Shaki, S., & Gevers, W. (2011). Cultural characteristics dissociate magnitude and ordinal information processing. Journal of Cross-Cultural Psychology, 42, 639–650.

    Article  Google Scholar 

  29. Tzelgov, J., Meyer, J., & Henik, A. (1992). Automatic and intentional processing of numerical information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 166–179. doi:10.1037/0278-7393.18.1.166

    Google Scholar 

  30. Zebian, S. (2005). Linkages between number concepts, spatial thinking, and directionality of writing: The SNARC effect and the REVERSE SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. Journal of Cognition and Culture, 5, 165–190.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Max M. Louwerse.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hutchinson, S., Louwerse, M.M. Language statistics explain the spatial–numerical association of response codes. Psychon Bull Rev 21, 470–478 (2014). https://doi.org/10.3758/s13423-013-0492-2

Download citation

Keywords

  • SNARC
  • Numerical cognition
  • Perceptual simulation
  • Embodied cognition
  • Number processing
  • Symbol interdependency
  • Language statistics