Skip to main content
Log in

Comparing memory capacity across stimuli requires maximally dissimilar foils: Using deep convolutional neural networks to understand visual working memory capacity for real-world objects

  • Published:
Memory & Cognition Aims and scope Submit manuscript

Abstract

The capacity of visual working and visual long-term memory plays a critical role in theories of cognitive architecture and the relationship between memory and other cognitive systems. Here, we argue that before asking the question of how capacity varies across different stimuli or what the upper bound of capacity is for a given memory system, it is necessary to establish a methodology that allows a fair comparison between distinct stimulus sets and conditions. One of the most important factors determining performance in a memory task is target/foil dissimilarity. We argue that only by maximizing the dissimilarity of the target and foil in each stimulus set can we provide a fair basis for memory comparisons between stimuli. In the current work we focus on a way to pick such foils objectively for complex, meaningful real-world objects by using deep convolutional neural networks, and we validate this using both memory tests and similarity metrics. Using this method, we then provide evidence that there is a greater capacity for real-world objects relative to simple colors in visual working memory; critically, we also show that this difference can be reduced or eliminated when non-comparable foils are used, potentially explaining why previous work has not always found such a difference. Our study thus demonstrates that working memory capacity depends on the type of information that is remembered and that assessing capacity depends critically on foil dissimilarity, especially when comparing memory performance and other cognitive systems across different stimulus sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Materials, data, and analysis code are available at https://osf.io/axyqs/.

References

  • Adam, K. C., Vogel, E. K., & Awh, E. (2017). Clear evidence for item limits in visual working memory. Cognitive Psychology, 97, 79–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29. https://doi.org/10.1016/j.jecp.2009.11.003

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.

    Article  PubMed  Google Scholar 

  • Asp, I. E., Störmer, V. S., & Brady, T. F. (2021). Greater visual working memory capacity for visually matched stimuli when they are perceived as meaningful. Journal of Cognitive Neuroscience, 33(5), 902–918.

    Article  PubMed  Google Scholar 

  • Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622–628.

    Article  PubMed  Google Scholar 

  • Babic, Z., Schurgin, M. W., & Brady, T. F. (2019). Is short-term storage correlated with fluid intelligence? Strategy use explains the apparent relationship between”“number of remembered item”“ and fluid intelligence. PsyArXiv. https://doi.org/10.31234/osf.io/83ch4

  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 1–29.

    Article  PubMed  Google Scholar 

  • Bays, P. M. (2015). Spikes not slots: Noise in neural populations limits working memory. Trends in Cognitive Sciences, 19(8), 431–438.

    Article  PubMed  Google Scholar 

  • Bays, P., Schneegans, S., Ma, W. J., & Brady, T. (2022). Representation and computation in working memory. PsyArxiv preprint.

  • Brady, T. F., & Alvarez, G. A. (2015). No evidence for a fixed object limit in working memory: Spatial ensemble representations inflate estimates of working memory capacity for complex objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 921.

    PubMed  Google Scholar 

  • Brady, T. F., & Störmer, V. S. (2022). The role of meaning in visual working memory: Real-world objects, but not simple features, benefit from deeper processing. Journal of Experimental Psychology. Learning, Memory, and Cognition, 48(7), 942–958. https://doi.org/10.1037/xlm0001014

    Article  PubMed  Google Scholar 

  • Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences, 105(38), 14325–14329.

    Article  Google Scholar 

  • Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4), 487.

    Article  PubMed  Google Scholar 

  • Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences, 113(27), 7459–7464.

    Article  Google Scholar 

  • Chung, Y. H., Brady, T., & Störmer, V. S. (2023a). Sequential encoding aids working memory for meaningful objects’ identities but not for their colors. PsyArxiv preprint.

  • Chung, Y. H., Brady, T. F., & Störmer, V. S. (2023b). No fixed limit for storing simple visual features: Realistic objects provide an efficient scaffold for holding features in mind. Psychological Science, 09567976231171339.

  • Chunharas, C., & Brady, T. (2023). Chunking, attraction, repulsion and ensemble effects are ubiquitous in visual working memory. PsyArxiv preprint.

  • Chunharas, C., Rademaker, R. L., Brady, T. F., & Serences, J. T. (2022). An adaptive perspective on visual working memory distortions. Journal of Experimental Psychology: General.

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.

    Article  PubMed  Google Scholar 

  • Curby, K. M., Glazek, K., & Gauthier, I. (2009). A visual short-term memory advantage for objects of expertise. Journal of Experimental Psychology: Human Perception and Performance, 35(1), 94.

    PubMed  Google Scholar 

  • Eickenberg, M., Gramfort, A., Varoquaux, G., & Thirion, B. (2017). Seeing it all: Convolutional network layers map the function of the human visual system. NeuroImage, 152, 184–194.

    Article  PubMed  Google Scholar 

  • Frank, D., Gray, O., & Montaldi, D. (2020). SOLID-Similar object and lure image database. Behavior Research Methods, 52(1), 151–161.

    Article  PubMed  Google Scholar 

  • Fukuda, K., Vogel, E., Mayr, U., & Awh, E. (2010). Quantity, not quality: the relationship between fluid intelligence and working memory capacity. Psychonomic Bulletin & Review, 17, 673–679.

  • Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. (2018). ImageNet-trained CNNs are biased towards texture; Increasing shape bias improves accuracy and robustness. arXiv preprint: 1811.12231.

  • Güçlü, U., & van Gerven, M. A. (2015). Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. Journal of Neuroscience, 35(27), 10005–10014.

    Article  PubMed  Google Scholar 

  • He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. In Computer Vision–ECCV 2016. In: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14 (pp. 630–645). Springer International Publishing.

  • Hebart, M. N., Zheng, C. Y., Pereira, F., & Baker, C. I. (2020). Revealing the multidimensional mental representations of natural objects underlying human similarity judgements. Nature Human Behaviour, 4(11), 1173–1185.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackson, M. C., & Raymond, J. E. (2008). Familiarity enhances visual working memory for faces. Journal of Experimental Psychology: Human Perception and Performance, 34(3), 556.

    PubMed  Google Scholar 

  • Jozwik, K. M., Kriegeskorte, N., Storrs, K. R., & Mur, M. (2017). Deep convolutional neural networks outperform feature-based but not categorical models in explaining object similarity judgments. Frontiers in Psychology, 8, 1726.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kar, K., Kubilius, J., Schmidt, K., Issa, E. B., & DiCarlo, J. J. (2019). Evidence that recurrent circuits are critical to the ventral stream”s execution of core object recognition behavior. Nature Neuroscience, 22(6), 974–983.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keshvari, S., Van den Berg, R., & Ma, W. J. (2013). No evidence for an item limit in change detection. PLoS Computational Biology, 9(2), e1002927.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khaligh-Razavi, S. M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain IT cortical representation. PloS Computational Biology, 10(11), e1003915.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kietzmann, T., McClure, P., & Kriegeskorte, N. (2019, January 25). Deep Neural Networks in Computational Neuroscience. Oxford Research Encyclopedia of Neuroscience. Retrieved 31 Oct. 2023, from https://oxfordre.com/neuroscience/view/10.1093/acrefore/9780190264086.001.0001/acrefore-9780190264086-e-46

  • Kubilius, J., Schrimpf, M., Nayebi, A., Bear, D., Yamins, D. L., & DiCarlo, J. J. (2018). Cornet: Modeling the neural mechanisms of core object recognition. BioRxiv preprint. https://doi.org/10.1101/408385

  • Landauer, T. K. (1986). How much do people remember? Some estimates of the quantity of learned information in long-term memory. Cognitive Science, 10(4), 477–493.

    Google Scholar 

  • Li, X., Xiong, Z., Theeuwes, J., & Wang, B. (2020). Visual memory benefits from prolonged encoding time regardless of stimulus type. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(10), 1998.

  • Lindsay, G. W. (2021). Convolutional neural networks as a model of the visual system: Past, present, and future. Journal of Cognitive Neuroscience, 33(10), 2017–2031.

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.

    Article  PubMed  Google Scholar 

  • Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391–400.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, W. J., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17(3), 347.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mate, J., & Baqués, J. (2009). Short article: Visual similarity at encoding and retrieval in an item recognition task. Quarterly Journal of Experimental Psychology, 62(7), 1277–1284.

    Article  Google Scholar 

  • Needell, C. D., & Bainbridge, W. A. (2022). Embracing new techniques in deep learning for estimating image memorability. Computational Brain & Behavior. https://doi.org/10.1007/s42113-022-00126-5

    Article  Google Scholar 

  • Ngiam, W. X., Khaw, K. L., Holcombe, A. O., & Goodbourn, P. T. (2019). Visual working memory for letters varies with familiarity but not complexity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45(10), 1761.

    PubMed  Google Scholar 

  • O’Donnell, R. E., Clement, A., & Brockmole, J. R. (2018). Semantic and functional relationships among objects increase the capacity of visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(7), 1151.

    PubMed  Google Scholar 

  • Palmeri, T. J., & Tarr, M. (2008). Visual object perception and long-term memory. In S.J. Luck & A. Hollingworth (Eds.) Visual memory (pp. 163–207). Oxford University Press.

  • Peterson, J. C., Abbott, J. T., & Griffiths, T. L. (2018). Evaluating (and improving) the correspondence between deep neural networks and human representations. Cognitive Science, 42(8), 2648–2669.

    Article  PubMed  Google Scholar 

  • Quirk, C., Adam, K. C. S., & Vogel, E. K. (2020). No evidence for an object working memory capacity benefit with extended viewing time. eNeuro, 7(5). https://doi.org/10.1523/ENEURO.0150-20.2020

  • Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., … & Berg, A. C. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.

  • Sahar, T., Sidi, Y., & Makovski, T. (2020). A metacognitive perspective of visual working memory with rich complex objects. Frontiers in Psychology, 11, 179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schurgin, M. W., & Brady, T. F. (2019). When “capacity” changes with set size: Ensemble representations support the detection of across-category changes in visual working memory. Journal of Vision, 19(5), 3–3.

    Article  PubMed  Google Scholar 

  • Schurgin, M. W., Wixted, J. T., & Brady, T. F. (2020). Psychophysical scaling reveals a unified theory of visual memory strength. Nature Human Behaviour, 4, 1156–1172. https://doi.org/10.1038/s41562-020-00938-0

  • Shoval, R., & Makovski, T. (2022). Meaningful stimuli inflate the role of proactive interference in visual working memory. Memory & Cognition, 50(6), 1157–1168.

    Article  Google Scholar 

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556.

  • Standing, L. (1973). Learning 10000 pictures. The Quarterly Journal of Experimental Psychology, 25(2), 207–222.

    Article  PubMed  Google Scholar 

  • Starr, A., Srinivasan, M., & Bunge, S. A. (2020). Semantic knowledge influences visual working memory in adults and children. PLoS ONE, 15(11), e0241110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Storrs, K. S., Kietzmann, T. C., Walther, A., Mehrer, J., & Kriegeskorte, N. (2021). Diverse deep neural networks all predict human inferior temporal cortex well, after training and fitting. Journal of Cognitive Neuroscience, 33(10), 2044–2064. https://doi.org/10.1162/jocn_a_01755

  • Suchow, J. W., Brady, T. F., Fougnie, D., & Alvarez, G. A. (2013). Modeling visual working memory with the MemToolbox. Journal of Vision, 13(10), 9–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thibeault, A., Stojanoski, B., & Emrich, S. M. (2023). Investigating the effects of perceptual complexity versus conceptual meaning on the object benefit in visual working memory. PsyArxiv. https://doi.org/10.31234/osf.io/3dmrq

  • Torres, R. E., Duprey, M., Campbell, K. L., & Emrich, S. M. (2023). Not all objects are created equal: the object benefit in visual working memory is supported by greater recollection, but only for some objects. https://doi.org/10.31234/osf.io/v2ta5

  • Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4(12), 11–11.

    Article  Google Scholar 

  • Xu, Y., & Vaziri-Pashkam, M. (2020). Limited correspondence in visual representation between the human brain and convolutional neural networks. BioRxiv. https://doi.org/10.1101/2020.03.12.989376

  • Yamins, D. L., & DiCarlo, J. J. (2016). Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience, 19(3), 356–365.

    Article  PubMed  Google Scholar 

  • Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619–8624.

    Article  Google Scholar 

  • Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233–235.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Support by NSF (BCS-1829434) to TFB/VSS and NSF (BCS- 2141189) to TFB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy F. Brady.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brady, T.F., Störmer, V.S. Comparing memory capacity across stimuli requires maximally dissimilar foils: Using deep convolutional neural networks to understand visual working memory capacity for real-world objects. Mem Cogn 52, 595–609 (2024). https://doi.org/10.3758/s13421-023-01485-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13421-023-01485-5

Keywords

Navigation