Memory & Cognition

, Volume 46, Issue 2, pp 191–203 | Cite as

The cost of switching between taxonomic and thematic semantics

  • Jon-Frederick Landrigan
  • Daniel Mirman


Current models and theories of semantic knowledge primarily capture taxonomic relationships (DOG and WOLF) and largely do not address the role of thematic relationships in semantic knowledge (DOG and LEASH). Recent evidence suggests that processing or representation of thematic relationships may be distinct from taxonomic relationships. If taxonomic and thematic relations are distinct, then there should be a cost associated with switching between them even when the task remains constant. This hypothesis was tested using two different semantic-relatedness judgment tasks: Experiment 1 used a triads task and Experiment 2 used an oddball task. In both experiments, participants were faster to respond when the same relationship appeared on consecutive trials than when the relationship types were different, even though the task remained the same and the specific relations were different on each trial. These results are consistent with the theory that taxonomic and thematic relations rely on distinct processes or representations.


Semantic memory Taxonomic Thematic 



This study was supported by National Institutes of Health Grant R01DC010805 to D.M. and by Drexel University. We thank Allison Britt, Amanda Kraft, and Leah Friedman for help with data collection.


  1. Allport, D. A. (1985). Distributed memory, modular subsystems and dysphasia. In S.K. Newman & R. Epstein (Eds.), Current perspectives in dysphasia (pp. 32–60). Edinburgh, UK: Churchill Livingstone.Google Scholar
  2. Au, A., Chan, A. S., & Chiu, H. (2003). Conceptual organization in Alzheimer’s dementia. Journal of Clinical and Experimental Neuropsychology, 25(6), 737–750. doi: CrossRefPubMedGoogle Scholar
  3. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. doi: CrossRefGoogle Scholar
  4. Bain, A. (1864). The senses and the intellect. London: Longman, Roberts, & Green.Google Scholar
  5. Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 84–91.CrossRefPubMedGoogle Scholar
  6. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(December), 2767–2796. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brysbaert, M., & New, B. (2009). Moving beyond Kucera and Francis: A critical evaluation of current word frequency norms and the introduction of a new and improved word frequency measure for American English. Behavior Research Methods, 41(4), 977–990.CrossRefPubMedGoogle Scholar
  8. Buxbaum, L. J., & Saffran, E. M. (2002). Knowledge of object manipulation and object function: Dissociations in apraxic and nonapraxic subjects. Brain and Language, 82(2), 179–199. doi: CrossRefPubMedGoogle Scholar
  9. Chen, L., Lambon Ralph, M. A., & Rogers, T. T. (2017). A unified model of human semantic knowledge and its disorders. Nature Human Behaviour, 1(March), 39. doi: CrossRefGoogle Scholar
  10. Cree, G. S., & McRae, K. (2003). Analyzing the factors underlying the structure and computation of the meaning of chipmunk, cherry, chisel, cheese, and cello (and many other such concrete nouns). Journal of Experimental Psychology., 132(2), 163–201. doi: CrossRefPubMedGoogle Scholar
  11. Cree, G. S., McRae, K., & McNorgan, C. (1999). An attractor model of lexical conceptual processing: Simulating semantic priming. Cognitive Science, 23(3), 371–414. doi: CrossRefGoogle Scholar
  12. Davidoff, J. B., & Roberson, D. (2004). Preserved thematic and impaired taxonomic categorisation: A case study. Language and Cognitive Processes, 19(1), 137–174. doi: CrossRefGoogle Scholar
  13. Dunham, P. J., & Dunham, F. (1995). Developmental antecedents of taxonomic and thematic strategies at 3 years of age. Developmental Psychology, 31(3), 483–493.CrossRefGoogle Scholar
  14. Estes, Z., Gibbert, M., Guest, D., & Mazursky, D. (2012). A dual-process model of brand extension: Taxonomic feature-based and thematic relation-based similarity independently drive brand extension evaluation. Journal of Consumer Psychology, 22(1), 86–101. doi: CrossRefGoogle Scholar
  15. Fernandino, L., Humphries, C. J., Seidenberg, M. S., Gross, W. L., Conant, L. L., & Binder, J. R. (2015). Predicting brain activation patterns associated with individual lexical concepts based on five sensory-motor attributes. Neuropsychologia, 76, 17–26. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gainotti, G. (2011). The organization and dissolution of semantic-conceptual knowledge: Is the “amodal hub” the only plausible model? Brain and Cognition, 75(3), 299–309. doi: CrossRefPubMedGoogle Scholar
  17. Golonka, S., & Estes, Z. (2009). Thematic relations affect similarity via commonalities. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35(6), 1454–1464. doi: CrossRefPubMedGoogle Scholar
  18. Hurley, R. S., Paller, K. A., Rogalski, E. J., & Mesulam, M. M. (2012). Neural mechanisms of object naming and word comprehension in primary progressive aphasia. Journal of Neuroscience, 32(14), 4848–4855. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  19. Irish, M., Addis, D. R., Hodges, J. R., & Piguet, O. (2012). Considering the role of semantic memory in episodic future thinking: Evidence from semantic dementia. Brain, 135(7), 2178–2191. doi: CrossRefPubMedGoogle Scholar
  20. Jackson, R. L., Hoffman, P., Pobric, G., & Lambon Ralph, M. A. (2015). The neural correlates of semantic association versus conceptual similarity. Cerbral Cortex, 20(2010), 8524. doi: Google Scholar
  21. Jefferies, E. (2013). The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex, 49(3), 611–625. doi: CrossRefPubMedGoogle Scholar
  22. Kalénine, S., Mirman, D., Middleton, E. L., & Buxbaum, L. J. (2012). Temporal dynamics of activation of thematic and functional knowledge during conceptual processing of manipulable artifacts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1274–1295. doi: PubMedPubMedCentralGoogle Scholar
  23. Lambon Ralph, M. A., Jefferies, E., Patterson, K., & Rogers, T. T. (2017). The neural and computational bases of semantic cognition. Nature Reviews Neuroscience, 18(1), 42–55. doi: CrossRefGoogle Scholar
  24. Landrigan, J.-F., & Mirman, D. (2016). Taxonomic and Thematic Relatedness Ratings for 659 Word Pairs. Journal of Open Pscychology Data, 4, 1–4.Google Scholar
  25. Lawson, R., Chang, F., & Wills, A. J. (2017). Free classification of large sets of everyday objects is more thematic than taxonomic. Acta Psychologica, 172, 26–40. doi: CrossRefPubMedGoogle Scholar
  26. Lee, C., Middleton, E. L., Mirman, D., Kalénine, S., & Buxbaum, L. J. (2013). Incidental and context-responsive activation of structure- and function-based action features during object identification. Journal of Experimental Psychology Human Perceptual Performance, 39(1), 257–270. doi: CrossRefGoogle Scholar
  27. Liu, J., Golinkoff, R. M., & Sak, K. (2001). One cow does not an animal make: Young children can extend novel words at the superordinate level. Child Development, 72(6), 1674–94. doi: CrossRefPubMedGoogle Scholar
  28. Lupyan, G. (2009). Extracommunicative functions of language: Verbal interference causes selective categorization impairments. Psychonomic Bulletin & Review, 16(4), 711–718. doi: CrossRefGoogle Scholar
  29. Lupyan, G., & Mirman, D. (2013). Linking language and categorization: Evidence from aphasia. Cortex, 49(5), 1187–1194. doi: CrossRefPubMedGoogle Scholar
  30. Marian, V., Bartolotti, J., Chabal, S., & Shook, A. (2012). CLEARPOND: Cross-linguistic easy-access resource for phonological and orthographic neighborhood densities. PLOS ONE, 7(8).Google Scholar
  31. McNorgan, C., Reid, J., & McRae, K. (2011). Integrating conceptual knowledge within and across representational modalities. Cognition, 118, 211–233. doi: CrossRefPubMedGoogle Scholar
  32. McRae, K., & Jones, M. (2013). Semantic memory. In D. Reisberg (Ed.), The Oxford handbook of cognitive psychology (pp. 206–219). Retrieved from
  33. Merck, C., Jonin, P. Y., Laisney, M., Vichard, H., & Belliard, S. (2014). When the zebra loses its stripes but is still in the savannah: Results from a semantic priming paradigm in semantic dementia. Neuropsychologia, 53(1), 221–232. doi: CrossRefPubMedGoogle Scholar
  34. Meyer, K., & Damasio, A. (2009). Convergence and divergence in a neural architecture for recognition and memory. Trends in Neurosciences, 32(7), 376–382. doi: CrossRefPubMedGoogle Scholar
  35. Mirman, D., & Britt, A. E. (2014). What we talk about when we talk about access deficits. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1634), 1–14. doi: Google Scholar
  36. Mirman, D., & Graziano, K. M. (2012). Individual differences in the strength of taxonomic versus thematic relations. Journal of Experimental Psychology: General, 141(4), 601–609. doi: CrossRefGoogle Scholar
  37. Mirman, D., Landrigan, J.-F., & Britt, A. E. (2017). Taxonomic and thematic semantic systems. Psychological Bulletin, 143(5), 499–520. doi: CrossRefPubMedGoogle Scholar
  38. Mirman, D., & Magnuson, J. S. (2008). Attractor dynamics and semantic neighborhood density: Processing is slowed by near neighbors and speeded by distant neighbors. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(1), 65–79. doi: PubMedPubMedCentralGoogle Scholar
  39. O’Connor, C. M., Cree, G. S., & McRae, K. (2009). Conceptual hierarchies in a flat attractor network: Dynamics of learning and computations. Cognitive Science, 33(4), 665–708. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  40. Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(December), 976–987. doi: CrossRefPubMedGoogle Scholar
  41. Pecher, D., Zeelenberg, R., & Barsalou, L. W. (2003). Verifying different madality properties for concepts produces swtiching costs. Psychological Science, 14(2), 119–124.CrossRefPubMedGoogle Scholar
  42. Rabovsky, M., & McRae, K. (2014). Simulating the N400 ERP component as semantic network error: Insights from a feature-based connectionist attractor model of word meaning. Cognition, 132(1), 68–89. doi: CrossRefPubMedGoogle Scholar
  43. R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  44. Rogers, T. T., Lambon Ralph, M. A, Garrard, P., Bozeat, S., McClelland, J. L., Hodges, J. R., & Patterson, K. (2004a). Structure and deterioration of semantic memory: A neuropsychological and computational investigation. Psychological Review, 111(1), 205–235. doi: CrossRefPubMedGoogle Scholar
  45. Rogers, T. T., Lambon Ralph, M. A., Hodges, J. R., & Patterson, K. (2004b). Natrual selection: The impact of semantic impairment on lexical and object decision. Cognitive Neuropsychology, 21, 331–352. doi: CrossRefPubMedGoogle Scholar
  46. Rogers, T. T., & Patterson, K. (2007). Object categorization: Reversals and explanations of the basic-level advantage. Journal of Experimental Psychology: General, 136(3), 451–469. doi: CrossRefGoogle Scholar
  47. Schwartz, M. F., Kimberg, D. Y., Walker, G. M., Brecher, A., Faseyitan, O. K., Dell, G. S., . . . Coslett, H. B. (2011). Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. Proceedings of the National Academy of Sciences of the United States of America 108, 8520–8524. doi:
  48. Semenza, C., Bisiacchi, P. S., & Romani, L. (1992). Naming disorders and semantic representations. Journal of Psycholinguistic Research, 21(5), 349–364. doi: CrossRefPubMedGoogle Scholar
  49. Semenza, C., Denes, G., Lucchese, D., & Bisiacchi, P. (1980). Selective deficit of conceptual structures in aphasia: Class versus thematic relations. Brain and Language, 10(2), 243–248. doi: CrossRefPubMedGoogle Scholar
  50. Simmons, S., & Estes, Z. (2008). Individual differences in the perception of similarity and difference. Cognition, 108(3), 781–795. doi: CrossRefPubMedGoogle Scholar
  51. Wilson, M. D. (1988). The MRC Psycholinguistic Database: Machine Readable Dictionary (Version 2). Behavior ResearchMethods, Instruments, & Computers, 20, 6–11.CrossRefGoogle Scholar
  52. Wisniewski, E. J., & Bassok, M. (1999). What makes a man similar to a tie? Stimulus compatibility with comparison and integration. Cognitive Psychology, 39, 208–238. doi: CrossRefPubMedGoogle Scholar
  53. Yee, E., & Thompson-Schill, S. L. (2016). Putting concepts into context. Psychonomic Bulletin & Review, 23(4), 1015–1027. doi: CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.Department of PsychologyDrexel UniversityPhiladelphiaUSA
  2. 2.Department of PsychologyUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations