Memory & Cognition

, Volume 46, Issue 1, pp 68–88 | Cite as

Memory accessibility shapes explanation: Testing key claims of the inherence heuristic account

  • Larisa J. Hussak
  • Andrei Cimpian


People understand the world by constructing explanations for what they observe. It is thus important to identify the cognitive processes underlying these judgments. According to a recent proposal, everyday explanations are often constructed heuristically: Because people need to generate explanations on a moment-by-moment basis, they cannot perform an exhaustive search through the space of possible reasons, but may instead use the information that is most easily accessible in memory (Cimpian & Salomon 2014a, b). In the present research, we tested two key claims of this proposal that have so far not been investigated. First, we tested whether—as previously hypothesized—the information about an entity that is most accessible in memory tends to consist of inherent or intrinsic facts about that entity, rather than extrinsic (contextual, historical, etc.) facts about it (Studies 1 and 2). Second, we tested the implications of this difference in the memory accessibility of inherent versus extrinsic facts for the process of generating explanations: Does the fact that inherent facts are more accessible than relevant extrinsic facts give rise to an inherence bias in the content of the explanations generated (Studies 3 and 4)? The findings supported the proposal that everyday explanations are generated in part via a heuristic process that relies on easily accessible—and often inherent—information from memory.


Explanation Heuristics Inherence heuristic Memory Accessibility 


Author note

We are grateful to our participants, to the Cognitive Development Lab at the University of Illinois for research assistance and helpful discussion, and to Zach Horne, John Hummel, Sunny Khemlani, and Brian Ross for their insightful comments on a previous draft of the manuscript. This research was supported by a Graduate Research Fellowship from the National Science Foundation (L.J.H.) and by research funds from the University of Illinois and New York University (A.C.).


  1. Ahn, W.-K., Kalish, C. W., Medin, D. L., & Gelman, S. A. (1995). The role of covariation versus mechanism information in causal attribution. Cognition, 54, 299–352.CrossRefPubMedGoogle Scholar
  2. Ashcraft, M. H. (1978). Property norms for typical and atypical items from 17 categories: A description and discussion. Memory & Cognition, 6, 227–232. doi: 10.3758/BF03197450 CrossRefGoogle Scholar
  3. Barr, R. A., & Caplan, L. J. (1987). Category representations and their implications for category structure. Memory & Cognition, 15, 397–418.CrossRefGoogle Scholar
  4. Bates, D. M. (2007). Linear mixed model implementation in lme4. University of Wisconsin-Madison.Google Scholar
  5. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. arXiv:1406.5823Google Scholar
  6. Bian, L., Leslie, S. J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355, 389–391. doi: 10.1126/science.aah6524 CrossRefPubMedGoogle Scholar
  7. Caplan, L. J., & Barr, R. A. (1991). The effects of feature necessity and extrinsicity on gradedness of category membership and class inclusion relations. British Journal of Psychology, 82, 427–440. doi: 10.1111/j.2044-8295.1991.tb02410.x CrossRefGoogle Scholar
  8. Carey, S. (1985). Conceptual change in childhood. Cambridge: MIT Press.Google Scholar
  9. Chi, M. T., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182.CrossRefGoogle Scholar
  10. Choi, I., Nisbett, R. E., & Norenzayan, A. (1999). Causal attribution across cultures: Variation and universality. Psychological Bulletin, 125, 47–63.CrossRefGoogle Scholar
  11. Cimpian, A. (2015). The inherence heuristic: Generating everyday explanations. In R. Scott & S. Kosslyn (Eds.), Emerging trends in the social and behavioral sciences (pp. 1–15). Hoboken: Wiley.Google Scholar
  12. Cimpian, A., Brandone, A. C., & Gelman, S. A. (2010). Generic statements require little evidence for acceptance but have powerful implications. Cognitive Science, 34, 1452–1482. doi: 10.1111/j.1551-6709.2010.01126.x CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cimpian, A., & Markman, E. M. (2009). Information learned from generic language becomes central to children’s biological concepts: Evidence from their open-ended explanations. Cognition, 113, 14–25. doi: 10.1016/j.cognition.2009.07.004 CrossRefPubMedGoogle Scholar
  14. Cimpian, A., & Markman, E. M. (2011). The generic/nongeneric distinction influences how children interpret new information about social others. Child Development, 82, 471–492. doi: 10.1111/j.1467-8624.2010.01525.x CrossRefPubMedGoogle Scholar
  15. Cimpian, A., & Salomon, E. (2014a). The inherence heuristic: An intuitive means of making sense of the world, and a potential precursor to psychological essentialism. Behavioral and Brain Sciences, 37, 461–480. doi: 10.1017/S0140525X13002197 CrossRefPubMedGoogle Scholar
  16. Cimpian, A., & Salomon, E. (2014b). Refining and expanding the proposal of an inherence heuristic in human understanding. Behavioral and Brain Sciences, 37, 506–527. doi: 10.1017/S0140525X14000028 CrossRefPubMedGoogle Scholar
  17. Cimpian, A., & Steinberg, O. D. (2014). The inherence heuristic across development: Systematic differences between children’s and adults’ explanations for everyday facts. Cognitive Psychology, 75, 130–154. doi: 10.1016/j.cogpsych.2014.09.001 CrossRefPubMedGoogle Scholar
  18. Collins, A. M., & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal Learning and Verbal Behavior, 8, 240–247. doi: 10.1016/S0022-5371(69)80069-1 CrossRefGoogle Scholar
  19. Craik, F. I. M., & Lockhart, R. S. (1972). Levels of processing: A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 11, 671–684. doi: 10.1016/S0022-5371(72)80001-X CrossRefGoogle Scholar
  20. Evans, J. S. B. T. (2006). The heuristic–analytic theory of reasoning: Extension and evaluation. Psychonomic Bulletin & Review, 13, 378–395. doi: 10.3758/BF03193858 CrossRefGoogle Scholar
  21. Evans, J. S. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255–278. doi: 10.1146/annurev.psych.59.103006.093629 CrossRefPubMedGoogle Scholar
  22. Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: Advancing the debate. Perspectives on Psychological Science, 8, 223–241. doi: 10.1177/1745691612460685 CrossRefPubMedGoogle Scholar
  23. Feldman, J. (2003). The simplicity principle in human concept learning. Current Directions in Psychological Science, 12, 227–232.CrossRefGoogle Scholar
  24. Gelman, S. (2003). The essential child: Origins of essentialism in everyday thought. New York: Oxford University Press.CrossRefGoogle Scholar
  25. Gentner, D., & Kurtz, K. (2005). Relational categories. In W.-K. Ahn, R. Goldstone, B. Love, A. Markman, & P. Wolff (Eds.), Categorization inside and outside the laboratory: Essays in honor of Douglas L. Medin (pp. 151–175). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  26. Gilbert, D. T., & Malone, P. S. (1995). The correspondence bias. Psychological Bulletin, 117, 21–38. doi: 10.1037/0033-2909.117.1.21 CrossRefPubMedGoogle Scholar
  27. Gilovich, T., Griffin, D., & Kahneman, D. (2002). Heuristics and biases: The psychology of intuitive judgment. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Gopnik, A. (1998). Explanation as orgasm. Minds and Machines, 8, 101–118.CrossRefGoogle Scholar
  29. Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7, 493–498.CrossRefGoogle Scholar
  30. Halford, G. S., Wilson, W. H., & Phillips, S. (1998). Processing capacity defined by relational complexity: Implications for comparative, developmental, and cognitive psychology. Behavioral and Brain Sciences, 21, 803–864.PubMedGoogle Scholar
  31. Hampton, J. A. (1979). Polymorphous concepts in semantic memory. Journal of Verbal Learning and Verbal Behavior, 18, 441–461.CrossRefGoogle Scholar
  32. Hampton, J. A. (1981). An investigation of the nature of abstract concepts. Memory & Cognition, 9, 149–156.CrossRefGoogle Scholar
  33. Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, 104, 427–466. doi: 10.1037/0033-295X.104.3.427 CrossRefGoogle Scholar
  34. Hussak, L. J., & Cimpian, A. (2015). An early-emerging explanatory heuristic promotes support for the status quo. Journal of Personality and Social Psychology, 109, 739–752. doi: 10.1037/pspa0000033 CrossRefPubMedGoogle Scholar
  35. Johnson, S. G. B., & Keil, F. C. (2014). Causal inference and the hierarchical structure of experience. Journal of Experimental Psychology: General, 143, 2223–2241.CrossRefGoogle Scholar
  36. Jorgensen, C. C., & Kintsch, W. (1973). The role of imagery in the evaluation of sentences. Cognitive Psychology, 4, 110–116.CrossRefGoogle Scholar
  37. Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux.Google Scholar
  38. Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute substitution in intuitive judgment. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics and biases: The psychology of intuitive judgment (pp. 49–81). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  39. Kahneman, D., & Tversky, A. (1973). On the psychology of prediction. Psychological Review, 80, 237–251. doi: 10.1037/h0034747 CrossRefGoogle Scholar
  40. Keil, F. C. (2006). Explanation and understanding. Annual Review of Psychology, 57, 227–254.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lagnado, D. A., & Sloman, S. A. (2006). Time as a guide to cause. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 451–460.PubMedGoogle Scholar
  42. Legare, C. H., & Lombrozo, T. (2014). Selective effects of explanation on learning during early childhood. Journal of Experimental Child Psychology, 126, 198–212.CrossRefPubMedGoogle Scholar
  43. Legrenzi, P., Girotto, V., & Johnson-Laird, P. N. (1993). Focussing in reasoning and decision making. Cognition, 49, 37–66.CrossRefPubMedGoogle Scholar
  44. Lewis, D. (1983). Extrinsic properties. Philosophical Studies, 44, 197–200.CrossRefGoogle Scholar
  45. Lombrozo, T. (2006). The structure and function of explanations. Trends in Cognitive Sciences, 10, 464–470.CrossRefPubMedGoogle Scholar
  46. Lombrozo, T. (2007). Simplicity and probability in causal explanation. Cognitive Psychology, 55, 232–257.CrossRefPubMedGoogle Scholar
  47. Lombrozo, T. (2012). Explanation and abductive inference. In K. Holyoak & R. Morrison (Eds.), Oxford handbook of thinking and reasoning (pp. 260–276). New York: Oxford University Press.Google Scholar
  48. Lombrozo, T., & Carey, S. (2006). Functional explanation and the function of explanation. Cognition, 99, 167–204.CrossRefPubMedGoogle Scholar
  49. Lombrozo, T., & Gwynne, N. Z. (2014). Explanation and inference: Mechanistic and functional explanations guide property generalization. Frontiers in Human Neuroscience, 8, 700.CrossRefPubMedPubMedCentralGoogle Scholar
  50. McRae, K., Cree, G. S., Seidenberg, M. S., & McNorgan, C. (2005). Semantic feature production norms for a large set of living and nonliving things. Behavior Research Methods, 37, 547–559. doi: 10.3758/BF03192726 CrossRefPubMedGoogle Scholar
  51. Mehlhorn, K., Taatgen, N. A., Lebiere, C., & Krems, J. F. (2011). Memory activation and the availability of explanations in sequential diagnostic reasoning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 1391–1411.PubMedGoogle Scholar
  52. Morris, M. W., & Peng, K. (1994). Culture and cause: American and Chinese attributions for social and physical events. Journal of Personality and Social Psychology, 67, 949–971.CrossRefGoogle Scholar
  53. Murphy, G. L., & Allopenna, P. D. (1994). The locus of knowledge effects in concept learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 904–919. doi: 10.1037/0278-7393.20.4.904 PubMedGoogle Scholar
  54. Paivio, A., Yuille, J. C., & Madigan, S. A. (1968). Concreteness, imagery, and meaningfulness values for 925 nouns. Journal of Experimental Psychology, 76((1, Pt. 2)), 1–25. doi: 10.1037/h0025327 CrossRefGoogle Scholar
  55. Pothos, E. M., & Chater, N. (2002). A simplicity principle in unsupervised human categorization. Cognitive Science, 26, 303–343.CrossRefGoogle Scholar
  56. Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439. doi: 10.1016/0010-0285(76)90013-X CrossRefGoogle Scholar
  57. Rozenblit, L., & Keil, F. (2002). The misunderstood limits of folk science: An illusion of explanatory depth. Cognitive Science, 26, 521–562.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Salomon, E., & Cimpian, A. (2014). The inherence heuristic as a source of essentialist thought. Personality and Social Psychology Bulletin, 40, 1297–1315. doi: 10.1177/0146167214541659 CrossRefPubMedGoogle Scholar
  59. Schwarz, N., & Clore, G. L. (1983). Mood, misattribution, and judgements of well-being: Informative and directive functions of affective states. Journal of Personality and Social Psychology, 45, 513–523.CrossRefGoogle Scholar
  60. Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An effort-reduction framework. Psychological Bulletin, 134, 207–222. doi: 10.1037/0033-2909.134.2.207 CrossRefPubMedGoogle Scholar
  61. Sloman, S. (2005). Causal models: How people think about the world and its alternatives. New York: Oxford University Press.CrossRefGoogle Scholar
  62. Snijders, T. A. B. (2005). Power and sample size in multilevel linear models. In B. S. Everitt & D. C. Howell (Eds.), Encyclopedia of statistics in behavioral science (Vol. 3, pp. 1570–1573). Chichester: Wiley.Google Scholar
  63. Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 89–96.CrossRefPubMedGoogle Scholar
  64. Spiller, S. A. (2011). Opportunity cost consideration. Journal of Consumer Research, 38, 595–610. doi: 10.1086/660045 CrossRefGoogle Scholar
  65. Spreen, O., & Schulz, R. W. (1966). Parameters of abstraction, meaningfulness, and pronunciability for 329 nouns. Journal of Verbal Learning and Verbal Behavior, 5, 459–468.CrossRefGoogle Scholar
  66. Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral and Brain Sciences, 23, 645–726.CrossRefPubMedGoogle Scholar
  67. Sutherland, S. L., & Cimpian, A. (2015). An explanatory heuristic gives rise to the belief that words are well suited for their referents. Cognition, 143, 228–240.CrossRefPubMedGoogle Scholar
  68. Thomas, R., Dougherty, M. R., & Buttaccio, D. R. (2014). Memory constraints on hypothesis generation and decision making. Current Directions in Psychological Science, 23, 264–270.CrossRefGoogle Scholar
  69. Thomas, R. P., Dougherty, M. R., Sprenger, A. M., & Harbison, J. I. (2008). Diagnostic hypothesis generation and human judgment. Psychological Review, 115, 155–185. doi: 10.1037/0033-295X.115.1.155 CrossRefPubMedGoogle Scholar
  70. Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207–232. doi: 10.1016/0010-0285(73)90033-9 CrossRefGoogle Scholar
  71. Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131. doi: 10.1126/science.185.4157.1124 CrossRefPubMedGoogle Scholar
  72. Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90(4), 293–315.Google Scholar
  73. Tversky, B., & Hemenway, K. (1984). Objects, parts, and categories. Journal of Experimental Psychology: General, 113, 169–193.CrossRefGoogle Scholar
  74. Tworek, C. M., & Cimpian, A. (2016). Why do people tend to infer “ought” from “is”? The role of biases in explanation. Psychological Science, 27, 1109–1122. doi: 10.1177/0956797616650875 CrossRefPubMedGoogle Scholar
  75. Vinson, D. P., & Vigliocco, G. (2008). Semantic feature production norms for a large set of objects and events. Behavior Research Methods, 40, 183–190. doi: 10.3758/BRM.40.1.183 CrossRefPubMedGoogle Scholar
  76. Walker, C. M., Lombrozo, T., Legare, C. H., & Gopnik, A. (2014). Explaining prompts children to privilege inductively rich properties. Cognition, 133, 343–357.CrossRefPubMedGoogle Scholar
  77. Weatherson, B., & Marshall, D. (2014). Intrinsic vs. extrinsic properties. In E. Zalta (Ed.), The Stanford encyclopedia of philosophy. Retrieved from
  78. Weber, E. U., Johnson, E. J., Milch, K. F., Chang, H., Brodscholl, J. C., & Goldstein, D. G. (2007). Asymmetric discounting in intertemporal choice: A query-theory account. Psychological Science, 18, 516–523.CrossRefPubMedGoogle Scholar
  79. Wellman, H. M. (2011). Reinvigorating explanations for the study of early cognitive development. Child Development Perspectives, 5, 33–38.CrossRefGoogle Scholar
  80. West, S. G., Ryu, E., Kwok, O. M., & Cham, H. (2011). Multilevel modeling: Current and future applications in personality research. Journal of Personality, 79, 2–50.CrossRefPubMedGoogle Scholar
  81. Williams, J. J., & Lombrozo, T. (2010). The role of explanation in discovery and generalization: Evidence from category learning. Cognitive Science, 34, 776–806.CrossRefPubMedGoogle Scholar
  82. Wu, L.-L., & Barsalou, L. W. (2009). Perceptual simulation in conceptual combination: Evidence from property generation. Acta Psychologica, 132, 173–189. doi: 10.1016/j.actpsy.2009.02.002 CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  1. 1.University of IllinoisUrbanaUSA
  2. 2.New York UniversityNew YorkUSA

Personalised recommendations