Memory & Cognition

, Volume 45, Issue 5, pp 776–791 | Cite as

Use of the recognition heuristic depends on the domain’s recognition validity, not on the recognition validity of selected sets of objects

  • Rüdiger F. Pohl
  • Martha Michalkiewicz
  • Edgar Erdfelder
  • Benjamin E. Hilbig
Article

Abstract

According to the recognition-heuristic theory, decision makers solve paired comparisons in which one object is recognized and the other not by recognition alone, inferring that recognized objects have higher criterion values than unrecognized ones. However, success—and thus usefulness—of this heuristic depends on the validity of recognition as a cue, and adaptive decision making, in turn, requires that decision makers are sensitive to it. To this end, decision makers could base their evaluation of the recognition validity either on the selected set of objects (the set’s recognition validity), or on the underlying domain from which the objects were drawn (the domain’s recognition validity). In two experiments, we manipulated the recognition validity both in the selected set of objects and between domains from which the sets were drawn. The results clearly show that use of the recognition heuristic depends on the domain’s recognition validity, not on the set’s recognition validity. In other words, participants treat all sets as roughly representative of the underlying domain and adjust their decision strategy adaptively (only) with respect to the more general environment rather than the specific items they are faced with.

Keywords

Recognition validity Recognition heuristic Decision making 

References

  1. Basehore, Z., & Anderson, R. B. (2016). The simple life: New experimental tests of the recognition heuristic. Judgment and Decision Making, 11(3), 301–309.Google Scholar
  2. Batchelder, W. H., & Riefer, D. M. (1999). Theoretical and empirical review of multinomial process tree modeling. Psychonomic Bulletin & Review, 6, 57–86. doi:10.3758/BF03210812 CrossRefGoogle Scholar
  3. Bayen, U. J., Erdfelder, E., Bearden, J. N., & Lozito, J. P. (2006). The interplay of memory and judgment processes in effects of aging on hindsight bias. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(5), 1003–1018. doi:10.1037/0278-7393.32.5.1003 PubMedGoogle Scholar
  4. Bröder, A., & Eichler, A. (2006). The use of recognition information and additional cues in inferences from memory. Acta Psychologica, 121, 275–284. doi:10.1016/j.actpsy.2005.07.001 CrossRefPubMedGoogle Scholar
  5. Castela, M., & Erdfelder, E. (in press). The memory state heuristic: A formal model based on repeated recognition judgments. Journal of Experimental Psychology: Learning, Memory, and Cognition.Google Scholar
  6. Castela, M., Kellen, D., Erdfelder, E., & Hilbig, B. E. (2014). The impact of subjective recognition experiences on recognition heuristic use: A multinomial processing tree approach. Psychonomic Bulletin & Review, 21, 1131–1138. doi:10.3758/s13423-014-0587-4 CrossRefGoogle Scholar
  7. Christensen-Szalanski, J. J. J., & Willham, C. F. (1991). The hindsight bias: A meta-analysis. Organizational Behavior and Human Decision Processes, 48(1), 147–168. doi:10.1016/0749-5978(91)90010-Q CrossRefGoogle Scholar
  8. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  9. Dhami, M. K., Hertwig, R., & Hoffrage, U. (2004). The role of representative design in an ecological approach to cognition. Psychological Bulletin, 130(6), 959–988. doi:10.1037/0033-2909.130.6.959 CrossRefPubMedGoogle Scholar
  10. Dougherty, M. R. P., Franco-Watkins, A. M., & Thomas, R. (2008). Psychological plausibility of the theory of probabilistic mental models and the fast and frugal heuristics. Psychological Review, 115(1), 199–213. doi:10.1037/0033-295X.115.1.199 CrossRefPubMedGoogle Scholar
  11. Erdfelder, E. (1984). Zur Bedeutung und Kontrolle des beta-Fehlers bei der inferenzstatistischen Prüfung log-linearer Modelle [On significance and control of the ß error in statistical tests of log-linear models]. Zeitschrift für Sozialpsychologie, 15, 18–32.Google Scholar
  12. Erdfelder, E., Auer, T.-S., Hilbig, B. E., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). Multinomial processing tree models. Zeitschrift für Psychologie/Journal of Psychology, 217, 108–124. doi:10.1027/0044-3409.217.3.108 CrossRefGoogle Scholar
  13. Erdfelder, E., Küpper-Tetzel, C. E., & Mattern, S. D. (2011). Threshold models of recognition and the recognition heuristic. Judgment and Decision Making, 6(1), 7–22.Google Scholar
  14. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analysis using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149–1160. doi:10.3758/BRM.41.4.1149 CrossRefPubMedGoogle Scholar
  15. Fiedler, K. (2008). The ultimate sampling dilemma in experience-based decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(1), 186–203. doi:10.1037/0278-7393.34.1.186 PubMedGoogle Scholar
  16. Fiedler, K. (2012). Meta-cognitive myopia and the dilemmas of inductive-statistical inference. In B. H. Ross (Ed.), The psychology of learning and motivation (Vol. 57, pp. 1–55). San Diego, CA: Elsevier Academic Press.CrossRefGoogle Scholar
  17. Fiedler, K., & Kutzner, F. (in press). Information sampling and reasoning biases: Implications for research in judgment and decision making. In G. Keren & G. Wu (Eds.), Blackwell handbook of judgment and decision making: An interdisciplinary perspective. Malden, MA: Blackwell.Google Scholar
  18. Gigerenzer, G. (1991). How to make cognitive illusions disappear: Beyond “heuristics and biases”. In W. Stroebe & M. Hewstone (Eds.), European review of social psychology (Vol. 2, pp. 83–115). Chichester: Wiley.Google Scholar
  19. Gigerenzer, G., & Goldstein, D. G. (2011). The recognition heuristic: A decade of research. Judgment and Decision Making, 6(1), 100–121.Google Scholar
  20. Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: Frequency formats. Psychological Review, 102(4), 684–704. doi:10.1037/0033-295X.102.4.684 CrossRefGoogle Scholar
  21. Gigerenzer, G., Hoffrage, U., & Kleinbölting, H. (1991). Probabilistic mental models: A Brunswikian theory of confidence. Psychological Review, 98(4), 506–528. doi:10.1037/0033-295X.98.4.506 CrossRefPubMedGoogle Scholar
  22. Gigerenzer, G., Todd, P. M., & the ABC Research Group (Eds.). (1999). Simple heuristics that make us smart. New York: Oxford University Press.Google Scholar
  23. Gilovich, T., Griffin, D., & Kahneman, D. (Eds.). (2002). Heuristics and biases: The psychology of intuitive judgment. New York: Cambridge University Press.Google Scholar
  24. Glöckner, A., & Bröder, A. (2011). Processing of recognition information and additional cues: A model-based analysis of choice, confidence, and response time. Judgment and Decision Making, 6(1), 23–42.Google Scholar
  25. Glöckner, A., & Bröder, A. (2014). Cognitive integration of recognition information and additional cues in memory-based decisions. Judgment and Decision Making, 9(1), 35–50.Google Scholar
  26. Glöckner, A., Hilbig, B. E., Henninger, F., & Fiedler, S. (2016). The reversed description-experience gap: Disentangling sources of presentation format effects in risky choice. Journal of Experimental Psychology: General, 145, 486–508. doi:10.1037/a0040103 CrossRefGoogle Scholar
  27. Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition heuristic. Psychological Review, 109(1), 75–90. doi:10.1037//0033-295X.109.1.75 CrossRefPubMedGoogle Scholar
  28. Harris, A. J. L., & Hahn, U. (2011). Unrealistic optimism about future life events: A cautionary note. Psychological Review, 118(1), 135–154. doi:10.1037/a0020997 CrossRefPubMedGoogle Scholar
  29. Heck, D. W., Moshagen, M., & Erdfelder, E. (2014). Model selection by minimum description length: Lower-bound sample sizes for the Fisher information approximation. Journal of Mathematical Psychology, 60, 29–34. doi:10.1016/j.jmp.2014.06.002 CrossRefGoogle Scholar
  30. Hilbig, B. E. (2010). Precise models deserve precise measures: A methodological dissection. Judgment and Decision Making, 5, 272–284.Google Scholar
  31. Hilbig, B. E., Erdfelder, E., & Pohl, R. F. (2010). One-reason decision making unveiled: A measurement model of the recognition heuristic. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36, 123–134. doi:10.1037/a0017518 PubMedGoogle Scholar
  32. Hilbig, B. E., Erdfelder, E., & Pohl, R. F. (2012). A matter of time: Antecedents of one-reason decision making based on recognition. Acta Psychologica, 141, 9–16. doi:10.1016/j.actpsy.2012.05.006 CrossRefPubMedGoogle Scholar
  33. Hilbig, B. E., & Glöckner, A. (2011). Yes, they can! Appropriate weighting of small probabilities as a function of information acquisition. Acta Psychologica, 138, 390–396. doi:10.1016/j.actpsy.2011.09.005 CrossRefPubMedGoogle Scholar
  34. Hilbig, B. E., Michalkiewicz, M., Castela, M., Pohl, R. F., & Erdfelder, E. (2015). Whatever the cost? Information integration in memory-based inferences depends on cognitive effort. Memory & Cognition, 43, 659–671. doi:10.3758/s13421-014-0493-z CrossRefGoogle Scholar
  35. Hilbig, B. E., & Moshagen, M. (2014). Generalized outcome-based strategy classification: Comparing deterministic and probabilistic choice models. Psychonomic Bulletin & Review, 21, 1431–1443. doi:10.3758/s13423-014-0643-0 CrossRefGoogle Scholar
  36. Hilbig, B. E., Pohl, R. F., & Bröder, A. (2009). Criterion knowledge: A moderator of using the recognition heuristic? Journal of Behavioral Decision Making, 22(5), 510–522. doi:10.1002/bdm.644 CrossRefGoogle Scholar
  37. Hoffrage, U. (2011). Recognition judgments and the performance of the recognition heuristic depend on the size of the reference class. Judgment and Decision Making, 6(1), 43–57.Google Scholar
  38. Hoffrage, U. (2017). Overconfidence. In R. F. Pohl (Ed.), Cognitive illusions: Intriguing phenomena in thinking, judgment and memory (2nd ed., pp. 291–314). London and New York: Routledge.Google Scholar
  39. Hoffrage, U., & Hertwig, R. (2006). Which world should be represented in representative design? In K. Fiedler & P. Juslin (Eds.), Information sampling and adaptive cognition (pp. 381–408). New York: Cambridge University Press.Google Scholar
  40. Hogarth, R. M., & Soyer, E. (2015). Providing information for decision making: Contrasting description and simulation. Journal of Applied Research in Memory and Cognition, 4, 221–228. doi:10.1016/j.jarmac.2014.01.005 CrossRefGoogle Scholar
  41. Horn, S., Pachur, T., & Mata, R. (2015). How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach. Acta Psychologica, 154, 77–85. doi:10.1016/j.actpsy.2014.11.001 CrossRefPubMedGoogle Scholar
  42. Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Oxford University Press.Google Scholar
  43. Juslin, P. (1994). The overconfidence phenomenon as a consequence of informal experimenter-guided selection of almanac items. Organizational Behavior and Human Decision Processes, 57, 226–246. doi:10.1006/obhd.1994.1013 CrossRefGoogle Scholar
  44. Juslin, P., Winman, A., & Olsson, H. (2000). Naive empiricism and dogmatism in confidence research: A critical examination of the hard–easy effect. Psychological Review, 107, 384–396. doi:10.1037/0033-295X.107.2.384 CrossRefPubMedGoogle Scholar
  45. Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under uncertainty: Heuristics and biases. Cambridge: Cambridge University Press.Google Scholar
  46. Klauer, K. C. (2010). Hierarchical multinomial processing tree models: A latent-trait approach. Psychometrika, 75, 70–98. doi:10.1007/S11336-009-9141-0 CrossRefGoogle Scholar
  47. Martignon, L., & Hoffrage, U. (2002). Fast, frugal, and fit: Simple heuristics for paired comparison. Theory and Decision, 52(1), 29–71. doi:10.1023/A:1015516217425 CrossRefGoogle Scholar
  48. Michalkiewicz, M., & Erdfelder, E. (2016). Individual differences in use of the recognition heuristic are stable across time, choice objects, domains, and presentation formats. Memory & Cognition, 44, 454–468. doi:10.3758/s13421-015-0567-6 CrossRefGoogle Scholar
  49. Moshagen, M. (2010). multiTree: A computer program for the analysis of multinomial processing tree models. Behavior Research Methods, 42, 42–54. doi:10.3758/BRM.42.1.42 CrossRefPubMedGoogle Scholar
  50. Moshagen, M., & Erdfelder, E. (2016). A new strategy for testing structural equation models. Structural Equation Modeling, 23, 54–60. doi:10.1080/10705511.2014.950896 CrossRefGoogle Scholar
  51. Newell, B. R., & Fernandez, D. (2006). On the binary quality of recognition and the inconsequentiality of further knowledge: Two critical tests of the recognition heuristic. Journal of Behavioral Decision Making, 19(4), 333–346. doi:10.1002/bdm.531 CrossRefGoogle Scholar
  52. Pachur, T. (2010). Recognition-based inference: When is less more in the real world? Psychonomic Bulletin & Review, 17(4), 589–598. doi:10.3758/PBR.17.4.589 CrossRefGoogle Scholar
  53. Pachur, T., Bröder, A., & Marewski, J. N. (2008). The recognition heuristic in memory-based inference: Is recognition a non-compensatory cue? Journal of Behavioral Decision Making, 21, 183–210. doi:10.1002/bdm.581 CrossRefGoogle Scholar
  54. Pachur, T., & Hertwig, R. (2006). On the psychology of the recognition heuristic: Retrieval primacy as a key determinant of its use. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(5), 983–1002. doi:10.1037/0278-7393.32.5.983 PubMedGoogle Scholar
  55. Pachur, T., Mata, R., & Schooler, L. J. (2009). Cognitive aging and the adaptive use of recognition in decision making. Psychology and Aging, 24(4), 901–915. doi:10.1037/a0017211 CrossRefPubMedGoogle Scholar
  56. Pachur, T., Todd, P. M., Gigerenzer, G., Schooler, L. J., & Goldstein, D. G. (2012). When is the recognition heuristic an adaptive tool? In P. M. Todd, G. Gigerenzer, & the ABC Research Group (Eds.), Ecological rationality: Intelligence in the world (pp. 113–143). New York: Oxford University Press.Google Scholar
  57. Pohl, R. F. (2006). Empirical tests of the recognition heuristic. Journal of Behavioral Decision Making, 19(3), 251–271. doi:10.1002/bdm.522 CrossRefGoogle Scholar
  58. Pohl, R. F. (2011). Recognition information in inferential decision making: An overview of the debate. Judgment and Decision Making, 6(5), 423–438.Google Scholar
  59. Pohl, R. F. (Ed.). (2017). Cognitive illusions: Intriguing phenomena in thinking, judgment, and memory (2nd ed.). London and New York: Routledge.Google Scholar
  60. Pohl, R. F. (in press). Measuring age-related differences in using a simple decision strategy: The case of the recognition heuristic. Zeitschrift für Psychologie.Google Scholar
  61. Pohl, R. F., & Erdfelder, E. (2017). Hindsight bias. In R. F. Pohl (Ed.), Cognitive illusions: Intriguing phenomena in thinking, judgment, and memory (2nd ed., pp. 424–445). London and New York: Routledge.Google Scholar
  62. Richter, T., & Späth, P. (2006). Recognition is used as one cue among others in judgment and decision making. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(1), 150–162. doi:10.1037/0278-7393.32.1.150 PubMedGoogle Scholar
  63. Rouder, J. M., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. doi:10.3758/PBR.16.2.225 CrossRefGoogle Scholar
  64. Schwikert, S. R., & Curran, T. (2014). Familiarity and recollection in heuristic decision making. Journal of Experimental Psychology: General, 143(6), 2341–2365. doi:10.1037/xge0000024 CrossRefGoogle Scholar
  65. Smith, J. B., & Batchelder, W. H. (2010). Beta-MPT: Multinomial processing tree models for addressing individual differences. Journal of Mathematical Psychology, 54, 167–183. doi:10.1016/j.jmp.2009.06.007
  66. Todd, P. M., & Gigerenzer, G. (2012). What is ecological rationality? In P. M. Todd, G. Gigerenzer, & the ABC Research Group (Eds.), Ecological rationality: Intelligence in the world (pp. 3–30). New York: Oxford University Press.Google Scholar
  67. Wagenmakers, E.-J., & Farrell, S. (2004). AIC model selection using Akaike weights. Psychonomic Bulletin & Review, 11(1), 192–196. doi:10.3758/BF03206482 CrossRefGoogle Scholar
  68. Winman, A. (1997). The importance of item selection in "knew-it-all-along" studies of general knowledge. Scandinavian Journal of Psychology, 38(1), 63–72. doi:10.1111/1467-9450.00010 CrossRefGoogle Scholar
  69. Winman, A., Juslin, P., & Björkman, M. (1998). The confidence-hindsight mirror effect in judgment: An accuracy-assessment model for the knew-it-all-along phenomenon. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24(2), 415–431. doi:10.1037/0278-7393.24.2.415 Google Scholar
  70. Wu, H., Myung, J. I., & Batchelder, W. H. (2010). On the minimum description length complexity of multinomial processing tree models. Journal of Mathematical Psychology, 54(3), 291–303. doi:10.3758/PBR.17.3.275 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Rüdiger F. Pohl
    • 1
  • Martha Michalkiewicz
    • 1
    • 3
  • Edgar Erdfelder
    • 1
  • Benjamin E. Hilbig
    • 2
  1. 1.Department of Psychology, School of Social SciencesUniversity of MannheimMannheimGermany
  2. 2.Cognitive Psychology LaboratoryUniversity of Koblenz-LandauKoblenz-LandauGermany
  3. 3.Institute of Experimental PsychologyHeinrich-Heine-University DüsseldorfDüsseldorfGermany

Personalised recommendations