Deconstructing the effect of self-directed study on episodic memory

Abstract

Self-directed learning is often associated with better long-term memory retention; however, the mechanisms that underlie this advantage remain poorly understood. This series of experiments was designed to “deconstruct” the notion of self-directed learning, in order to better identify the factors most responsible for these improvements to memory. In particular, we isolated the memory advantage that comes from controlling the content of study episodes from the advantage that comes from controlling the timing of those episodes. Across four experiments, self-directed learning significantly enhanced recognition memory, relative to passive observation. However, the advantage for self-directed learning was found to be present even under extremely minimal conditions of volitional control (simply pressing a button when a participant was ready to advance to the next item). Our results suggest that improvements to memory following self-directed encoding may be related to the ability to coordinate stimulus presentation with the learner’s current preparatory or attentional state, and they highlight the need to consider the range of cognitive control processes involved in and influenced by self-directed study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    All model comparisons were performed using likelihood-ratio tests.

  2. 2.

    A measure that is similar to the total number of visits is the total amount of time spent studying an item, which Voss et al. (2011b) found interacted with encoding condition, such that items studied for longer durations led to a specific benefit under self-directed conditions. The same analysis of our data revealed an effect of duration for both recognition and spatial recall, but no such interactions with encoding condition. Since study duration is closely related to number of visits, this analysis is not reported here, but the results are available on request.

  3. 3.

    Note that in Exp. 4, the number of visits was not equal to 2 for all items studied, since items at the midpoint of each sequence (at which point the window doubled back) were only visited once. The effect of number of visits was thus dependent on a relatively small number of items; importantly, removing this explanatory variable from the model did not alter any conclusions from this analysis.

References

  1. Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, techniques, and illusions. Annual Review of Psychology, 64, 417–444. doi:10.1146/annurev-psych-113011-143823

    PubMed  Article  Google Scholar 

  2. Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12, 201–208. doi:10.1016/j.tics.2008.02.009

    PubMed  Article  PubMed Central  Google Scholar 

  3. Carrasco, M. (2011). Visual attention: The past 25 years. Vision Research, 51, 1484–1525. doi:10.1016/j.visres.2011.04.012

    PubMed  Article  PubMed Central  Google Scholar 

  4. Chrastil, E. R., & Warren, W. H. (2012). Active and passive contributions to spatial learning. Psychonomic Bulletin & Review, 19, 1–23. doi:10.3758/s13423-011-0182-x

    Article  Google Scholar 

  5. Chun, M. M., & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17, 177–184. doi:10.1016/j.conb.2007.03.005

    PubMed  Article  Google Scholar 

  6. Craddock, M., Martinovic, J., & Lawson, R. (2011). An advantage for active versus passive aperture-viewing in visual object recognition. Perception, 40, 1154–1163. doi:10.1068/p6974

    PubMed  Article  Google Scholar 

  7. Dempster, F. N. (1988). The spacing effect: A case study in the failure to apply the results of psychological research. American Psychologist, 43, 627–634. doi:10.1037/0003-066X.43.8.627

    Article  Google Scholar 

  8. Doeller, C., Barry, C., & Burgess, N. (2010). Evidence for grid cells in a human memory network. Nature, 463, 657–661. doi:10.1038/nature08704

    PubMed  Article  PubMed Central  Google Scholar 

  9. Doeller, C., & Burgess, N. (2008). Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proceedings of the National Academy of Sciences, 105, 5909–5914. doi:10.1073/pnas.0711433105

    Article  Google Scholar 

  10. Ellen, P., Parko, E., Wages, C., Doherty, D., & Herrmann, T. (1982). Spatial problems solving by rats: Exploration and cognitive maps. Learning and Motivation, 13, 81–94. doi:10.1016/0023-969090030-3

    Article  Google Scholar 

  11. Gruber, M., & Otten, L. (2010). Voluntary control over prestimulus activity related to encoding. Journal of Neuroscience, 30, 9793–9800. doi:10.1523/JNEUROSCI.0915-10.2010

    PubMed  Article  PubMed Central  Google Scholar 

  12. Guderian, S., Schott, B., Richardson-Klavehn, A., & Düzel, E. (2009). Medial temporal theta state before an event predicts episodic encoding success in humans. Proceedings of the National Academy of Sciences, 106, 5365. doi:10.1073/pnas.0900289106

    Article  Google Scholar 

  13. Gureckis, T. M., & Markant, D. B. (2012). Self-directed learning: A cognitive and computational perspective. Perspectives on Psychological Science, 7, 464–481. doi:10.1177/1745691612454304

    Article  Google Scholar 

  14. Harman, K. L., Humphrey, G. K., & Goodale, M. A. (1999). Active manual control of object views facilitates visual recognition. Current Biology, 9, 1315–1318. doi:10.1016/S0960-9822(00)80053-6

    PubMed  Article  Google Scholar 

  15. Kornell, N., & Bjork, R. A. (2007). The promise and perils of self-regulated study. Psychonomic Bulletin & Review, 14, 219–224. doi:10.3758/BF03194055

    Article  Google Scholar 

  16. Kornell, N., & Metcalfe, J. (2006). Study efficacy and the region of proximal learning framework. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 609–622. doi:10.1037/0278-7393.32.3.609

    PubMed  Google Scholar 

  17. Liu, C. H., Ward, J., & Markall, H. (2007). The role of active exploration of 3D face stimuli on recognition memory of facial information. Journal of Experimental Psychology: Human Perception and Performance, 33, 895. doi:10.1037/0096-1523.33.4.895

    PubMed  Google Scholar 

  18. Luursema, J. M., & Verwey, W. B. (2011). The contribution of dynamic exploration to virtual anatomical learning. Advances in Human–Computer Interaction, 2011, 1–6. doi:10.1155/2011/965342

    Article  Google Scholar 

  19. Markant, D., & Gureckis, T. M. (2014). Is it better to select or to receive? Learning via active and passive hypothesis testing. Journal of Experimental Psychology: General, 143, 94–122. doi:10.1037/a0032108

    Article  Google Scholar 

  20. Meijer, F., & Van der Lubbe, R. H. (2011). Active exploration improves perceptual sensitivity for virtual 3D objects in visual memory. Vision Research, 51, 2431–2439. doi:10.1016/j.visres.2011.09.013

    PubMed  Article  Google Scholar 

  21. Metcalfe, J. (2002). Is study time allocated selectively to a region of proximal learning? Journal of Experimental Psychology: General, 131, 349–363. doi:10.1037/0096-3445.131.3.349

    Article  Google Scholar 

  22. Metcalfe, J. (2009). Metacognitive judgments and control of study. Current Directions in Psychological Science, 18, 159–163. doi:10.1111/j.1467-8721.2009.01628.x

    PubMed  Article  PubMed Central  Google Scholar 

  23. Metcalfe, J., & Finn, B. (2008). Evidence that judgments of learning are causally related to study choice. Psychonomic Bulletin & Review, 15, 174–179. doi:10.3758/PBR.15.1.174

    Article  Google Scholar 

  24. Metcalfe, J., & Kornell, N. (2003). The dynamics of learning and allocation of study time to a region of proximal learning. Journal of Experimental Psychology: General, 132, 530–542. doi:10.1037/0096-3445.132.4.530

    Article  Google Scholar 

  25. Nelson, T. O., & Narens, L. (1994). Why investigate metacognition? In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition: Knowing about knowing (pp. 1–25). Cambridge: MIT Press.

    Google Scholar 

  26. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Oxford University Press.

    Google Scholar 

  27. Otten, L. J., Quayle, A. H., Akram, S., Ditewig, T. A., & Rugg, M. D. (2006). Brain activity before an event predicts later recollection. Nature Neuroscience, 9, 489–491. doi:10.1038/nn1663

    PubMed  Article  Google Scholar 

  28. Plancher, G., Barra, J., Orriols, E., & Piolino, P. (2013). The influence of action on episodic memory: A virtual reality study. Quarterly Journal of Experimental Psychology, 66, 895–909. doi:10.1080/17470218.2012.722657

    Article  Google Scholar 

  29. Posner, M. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32, 3–25. doi:10.1080/00335558008248231

    PubMed  Article  Google Scholar 

  30. Renner, M. (1990). Neglected aspects of exploratory and investigatory behavior. Psychobiology, 18, 16–22. doi:10.3758/BF03327209

    Google Scholar 

  31. Save, E., Buhot, M., Foreman, N., & Thinus-Blanc, C. (1992). Exploratory activity and response to a spatial change in rats with hippocampal or posterior parietal cortical lesions. Behavioural Brain Research, 47, 113–127. doi:10.1016/S0166-4328(05)80118-4

    PubMed  Article  Google Scholar 

  32. Simon, D., & Bjork, R. (2001). Metacognition in motor learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 907–912. doi:10.1037/0278-7393.27.4.907

    PubMed  Google Scholar 

  33. Son, L. K., & Metcalfe, J. (2000). Metacognitive and control strategies in study-time allocation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 204–221. doi:10.1037/0278-7393.26.1.204

    PubMed  Google Scholar 

  34. Voss, J., Galvan, A., & Gonsalves, B. (2011a). Cortical regions recruited for complex active-learning strategies and action planning exhibit rapid reactivation during memory retrieval. Neuropsychologia, 49, 3956–3966. doi:10.1016/j.neuropsychologia.2011.10.012

    PubMed  Article  PubMed Central  Google Scholar 

  35. Voss, J., Gonsalves, B., Federmeier, K., Tranel, D., & Cohen, N. (2011b). Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nature Neuroscience, 14, 115–120. doi:10.1038/nn.2693

    PubMed  Article  PubMed Central  Google Scholar 

  36. Voss, J., Warren, D., Gonsalves, B., Federmeier, K., Tranel, D., & Cohen, N. (2011c). Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus. Proceedings of the National Academy of Sciences, 108, E402–E409. doi:10.1073/pnas.1100225108

    Article  Google Scholar 

  37. Yoo, J. J., Hinds, O., Ofen, N., Thompson, T. W., Whitfield-Gabrieli, S., Triantafyllou, C., & Gabrieli, J. D. E. (2011). When the brain is prepared to learn: Enhancing human learning using real-time fMRI. NeuroImage, 59, 846–852. doi:10.1016/j.neuroimage.2011.07.063

    PubMed  Article  Google Scholar 

Download references

Author note

The authors thank Patricia Chan, Hao Wang, and Devin Domingo for their help collecting the data. We also thank Joel Voss for sharing the stimuli used in the experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Douglas Markant.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Markant, D., DuBrow, S., Davachi, L. et al. Deconstructing the effect of self-directed study on episodic memory. Mem Cogn 42, 1211–1224 (2014). https://doi.org/10.3758/s13421-014-0435-9

Download citation

Keywords

  • Memory
  • Metacognition
  • Self-directed learning
  • Self-regulated learning
  • Volitional control
  • Decision making
  • Metamemory
  • Object recognition
  • Spatial cognition