Memory & Cognition

, Volume 42, Issue 3, pp 464–480 | Cite as

The role of individual differences in cognitive training and transfer

  • Susanne M. Jaeggi
  • Martin Buschkuehl
  • Priti Shah
  • John Jonides


Working memory (WM) training has recently become a topic of intense interest and controversy. Although several recent studies have reported near- and far-transfer effects as a result of training WM-related skills, others have failed to show far transfer, suggesting that generalization effects are elusive. Also, many of the earlier intervention attempts have been criticized on methodological grounds. The present study resolves some of the methodological limitations of previous studies and also considers individual differences as potential explanations for the differing transfer effects across studies. We recruited intrinsically motivated participants and assessed their need for cognition (NFC; Cacioppo & Petty Journal of Personality and Social Psychology 42:116–131, 1982) and their implicit theories of intelligence (Dweck, 1999) prior to training. We assessed the efficacy of two WM interventions by comparing participants’ improvements on a battery of fluid intelligence tests against those of an active control group. We observed that transfer to a composite measure of fluid reasoning resulted from both WM interventions. In addition, we uncovered factors that contributed to training success, including motivation, need for cognition, preexisting ability, and implicit theories about intelligence.


Working memory Reasoning Skill acquisition Individual differences Intelligence 


Author note

This work has been funded by grants from the ONR and the NSF to J.J., and by a grant from the IES to P.S. We thank our research assistants, especially Chris Cargill, for their invaluable help with data collection. We also thank Michael Kane, Bill Thompson, and Stephen Kosslyn for letting us use their material for the verbal analogies task.

Supplementary material

13421_2013_364_MOESM1_ESM.doc (140 kb)
ESM 1 (DOC 140 kb)


  1. Anguera, J. A., Bernard, J. A., Jaeggi, S. M., Buschkuehl, M., Benson, B. L., Jennett, S., & Seidler, R. D. (2012). The effects of working memory resource depletion and training on sensorimotor adaptation. Behavioural Brain Research, 228, 107–115.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Arendasy, M., & Sommer, M. (2005). The effect of different types of perceptual manipulations on the dimensionality of automatically generated figural matrices. Intelligence, 33, 307–324. doi: 10.1016/j.intell.2005.02.002 CrossRefGoogle Scholar
  3. Ball, K., Berch, D. B., Helmers, K. F., Jobe, J. B., Leveck, M. D., Marsiske, M., & Willis, S. L. (2002). Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA: Journal of the American Medical Association, 288, 2271–2281.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we learn? A taxonomy for far transfer. Psychological Bulletin, 128, 612–637.PubMedCrossRefGoogle Scholar
  5. Basak, C., Boot, W. R., Voss, M. W., & Kramer, A. F. (2008). Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychology and Aging, 23, 765–777.PubMedCrossRefGoogle Scholar
  6. Bell, D. S., Harless, C. E., Higa, J. K., Bjork, E. L., Bjork, R. A., Bazargan, M., & Mangione, C. M. (2008). Knowledge retention after an online tutorial: A randomized educational experiment among resident physicians. Journal of General Internal Medicine, 23, 1164–1171.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bennett, G. K., Seashore, H. G., & Wesman, A. G. (1972). Differential Aptitude Test: Space relations. New York: Psychological Corp.Google Scholar
  8. Berger, F. R., Gupta, W. B., Berger, R. M., & Skinner, J. (1990). Air Force Officer Qualifying Test (AFOQT) Form P: Test manual (AFHRL-TR-89-56). Brooks Air Force Base, TX: Manpower and Personnel Division, Air Force Human Resources Laboratory.Google Scholar
  9. Bergman Nutley, S., Soderqvist, S., Bryde, S., Thorell, L. B., Humphreys, K., & Klingberg, T. (2011). Gains in fluid intelligence after training non-verbal reasoning in 4-year-old children: A controlled, randomized study. Developmental Science, 14, 591–601.PubMedCrossRefGoogle Scholar
  10. Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: A longitudinal study and an intervention. Child Development, 78, 246–263. doi: 10.1111/j.1467-8624.2007.00995.x PubMedCrossRefGoogle Scholar
  11. Borella, E., Carretti, B., Riboldi, F., & de Beni, R. (2010). Working memory training in older adults evidence of transfer and maintenance effects. Psychology and Aging, 25, 767–778. doi: 10.1037/A0020683 PubMedCrossRefGoogle Scholar
  12. Burton, K. D., Lydon, J. E., D’Alessandro, D. U., & Koestner, R. (2006). The differential effects of intrinsic and identified motivation on well-being and performance: Prospective, experimental, and implicit approaches to self-determination theory. Journal of Personality and Social Psychology, 91, 750–762.PubMedCrossRefGoogle Scholar
  13. Buschkuehl, M., & Jaeggi, S. M. (2010). Improving intelligence: A literature review. Swiss Medical Weekly, 140, 266–272.PubMedGoogle Scholar
  14. Buschkuehl, M., Jaeggi, S. M., Hutchison, S., Perrig-Chiello, P., Dapp, C., Muller, M., & Perrig, W. J. (2008). Impact of working memory training on memory performance in old-old adults. Psychology and Aging, 23, 743–753.PubMedCrossRefGoogle Scholar
  15. Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social Psychology, 42, 116–131.CrossRefGoogle Scholar
  16. Carretti, B., Borella, E., Zavagnin, M., & de Beni, R. (2013). Gains in language comprehension relating to working memory training in healthy older adults. International Journal of Geriatric Psychiatry, 28, 539–546. doi: 10.1002/gps.3859 PubMedCrossRefGoogle Scholar
  17. Cattell, R. B., & Cattell, A. K. S. (1963). Test of “g”: Culture Fair Scale 3. Champaign: Institute for Personality and Ability Testing.Google Scholar
  18. Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological Bulletin, 132, 354–380. doi: 10.1037/0033-2909.132.3.354 PubMedCrossRefGoogle Scholar
  19. Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace: Training and transfer effects with a complex working memory span task. Psychonomic Bulletin & Review, 17, 193–199. doi: 10.3758/PBR.17.2.193 CrossRefGoogle Scholar
  20. Chooi, W. T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40, 531–542. doi: 10.1016/j.intell.2012.07.004 CrossRefGoogle Scholar
  21. Craik, F. I. M., Winocur, G., Palmer, H., Binns, M. A., Edwards, M., Bridges, K., & Stuss, D. T. (2007). Cognitive rehabilitation in the elderly: Effects on memory. Journal of the International Neuropsychological Society, 13, 132–142. doi: 10.1017/S1355617707070166 PubMedCrossRefGoogle Scholar
  22. Dahlin, E., Neely, A. S., Larsson, A., Backman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320, 1510–1512.PubMedCrossRefGoogle Scholar
  23. De Lisi, R., & Wolford, J. L. (2002). Improving children’s mental rotation accuracy with computer game playing. Journal of Genetic Psychology, 163, 272–282. doi: 10.1080/00221320209598683 PubMedCrossRefGoogle Scholar
  24. Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627–668. doi: 10.1037/0033-2909.125.6.627. disc. 692–700.PubMedCrossRefGoogle Scholar
  25. Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92, 1087–1101. doi: 10.1037/0022-3514.92.6.1087 PubMedCrossRefGoogle Scholar
  26. Dweck, C. S. (1999). Self-theories: Their role in motivation, personality, and development. Philadelphia: Psychology Press.Google Scholar
  27. Ekstrom, R. B., French, J. W., Harmon, H. H., & Derman, D. (1976). ETS Kit of Factor-Referenced Cognitive Tests. Princeton: Educational Testing Service.Google Scholar
  28. Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999). Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 102–134). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299.CrossRefGoogle Scholar
  30. Freund, P. A., & Hotting, H. (2011). How to get really smart: Modeling retest and training effects in ability testing using computer-generated figural matrix items. Intelligence, 39, 233–243. doi: 10.1016/j.intell.2011.02.009 CrossRefGoogle Scholar
  31. García-Madruga, J. A., Elosúa, M. R., Gil, L., Gómez-Veiga, I., Vila, J. Ó., Orjales, I., & Duque, G. (2013). Reading comprehension and working memory’s executive processes: An intervention study in primary school students. Reading Research Quarterly, 48, 155–174.CrossRefGoogle Scholar
  32. Grant, H., & Dweck, C. S. (2003). Clarifying achievement goals and their impact. Journal of Personality and Social Psychology, 85, 541–553.PubMedCrossRefGoogle Scholar
  33. Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., & Bauman, A. (2007). Physical activity and public health—Updated recommendation for adults from the American college of sports medicine and the American heart association. Circulation, 116, 1081–1093. doi: 10.1161/Circulationaha.107.185649 PubMedCrossRefGoogle Scholar
  34. Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12, F9–F15. doi: 10.1111/j.1467-7687.2009.00848.x PubMedCrossRefGoogle Scholar
  35. Holmes, J., Gathercole, S. E., Place, M., Dunning, D. L., Hilton, K. A., & Elliott, J. G. (2010). Working memory deficits can be overcome: Impacts of training and medication on working memory in children with ADHD. Applied Cognitive Psychology, 24, 827–836.CrossRefGoogle Scholar
  36. Hong, Y. Y., Chiu, C. Y., Dweck, C. S., Lin, D. M. S., & Wan, W. (1999). Implicit theories, attributions, and coping: A meaning system approach. Journal of Personality and Social Psychology, 77, 588–599.CrossRefGoogle Scholar
  37. Hossiep, R., Turck, D., & Hasella, M. (1999). Bochumer Matrizentest: BOMAT advanced. Göttingen: Hogrefe.Google Scholar
  38. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105, 6829–6833. doi: 10.1073/pnas.0801268105 CrossRefGoogle Scholar
  39. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011a). Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences, 108, 10081–10086. doi: 10.1073/pnas.1103228108 CrossRefGoogle Scholar
  40. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011b). Working memory training in typically developing children and children with Attention Deficit Hyperactivity Disorder: Evidence for plasticity in executive control processes. Paper presented at the Eighteenth Annual Cognitive Neuroscience Society Meeting, San Francisco, CA.Google Scholar
  41. Jaeggi, S. M., Buschkuehl, M., Perrig, W. J., & Meier, B. (2010). The concurrent validity of the N-back task as a working memory measure. Memory, 18, 394–412.Google Scholar
  42. Jaeggi, S. M., Seewer, R., Nirkko, A. C., Eckstein, D., Schroth, G., Groner, R., & Gutbrod, K. (2003). Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual tasks: Functional magnetic resonance imaging study. NeuroImage, 19, 210–225.PubMedCrossRefGoogle Scholar
  43. Jaeggi, S. M., Studer-Luethi, B., Buschkuehl, M., Su, Y.-F., Jonides, J., & Perrig, W. J. (2010). The relationship between n-back performance and matrix reasoning—Implications for training and transfer. Intelligence, 38, 625–635.Google Scholar
  44. Jausovec, N., & Jausovec, K. (2012). Working memory training: Improving intelligence—Changing brain activity. Brain and Cognition, 79, 96–106. doi: 10.1016/j.bandc.2012.02.007 PubMedCrossRefGoogle Scholar
  45. Johnson, W., te Nijenhuis, J., & Bouchard, T. J. (2008). Still just 1 g: Consistent results from five test batteries. Intelligence, 36, 81–95. doi: 10.1016/j.intell.2007.06.001 CrossRefGoogle Scholar
  46. Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C., Berman, M. G., & Moore, K. S. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193–224. doi: 10.1146/annurev.psych.59.103006.093615 PubMedCrossRefGoogle Scholar
  47. Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133, 189–217. doi: 10.1037/0096-3445.133.2.189 CrossRefGoogle Scholar
  48. Kane, M. J., & Miyake, T. M. (2007). The validity of “conceptual span” as a measure of working memory capacity. Memory & Cognition, 35, 1136–1150. doi: 10.3758/BF03193484 CrossRefGoogle Scholar
  49. Klauer, K. J., Willmes, K., & Phye, G. D. (2002). Inducing inductive reasoning: Does it transfer to fluid intelligence? Contemporary Educational Psychology, 27, 1-25.Google Scholar
  50. Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlstrom, K., & Westerberg, H. (2005). Computerized training of working memory in children with ADHD—A randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 177–186.PubMedCrossRefGoogle Scholar
  51. Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24, 781–791.PubMedCrossRefGoogle Scholar
  52. Kundu, B., Sutterer, D. W., Emrich, S. M., & Postle, B. R. (2013). Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention. Journal of Neuroscience, 33, 8705–8715. doi: 10.1523/JNEUROSCI.5565-12.2013 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Li, S. C., Schmiedek, F., Huxhold, O., Rocke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23, 731–742.PubMedCrossRefGoogle Scholar
  54. Loosli, S. V., Buschkuehl, M., Perrig, W. J., & Jaeggi, S. M. (2012). Working memory training improves reading processes in typically developing children. Child Neuropsychology, 18, 62–78. doi: 10.1080/09297049.2011.575772 PubMedCrossRefGoogle Scholar
  55. Lustig, C., Shah, P., Seidler, R., & Reuter-Lorenz, P. A. (2009). Aging, training, and the brain: A review and future directions. Neuropsychological Review, 19, 504–522. doi: 10.1007/s11065-009-9119-9 CrossRefGoogle Scholar
  56. Matzen, L. E., Benz, Z. O., Dixon, K. R., Posey, J., Kroger, J. K., & Speed, A. E. (2010). Recreating Raven’s: Software for systematically generating large numbers of Raven-like matrix problems with normed properties. Behavior Research Methods, 42, 525–541. doi: 10.3758/BRM.42.2.525 PubMedCrossRefGoogle Scholar
  57. Mayo, E. (1933). The human problems of an industrial civilization. New York: Macmillan.Google Scholar
  58. McVay, J. C., & Kane, M. J. (2009). Conducting the train of thought: Working memory capacity, goal neglect, and mind wandering in an executive-control task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 196–204. doi: 10.1037/a0014104 PubMedCentralPubMedGoogle Scholar
  59. Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130, 621–640. doi: 10.1037/0096-3445.130.3.621 CrossRefGoogle Scholar
  60. Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin & Review, 18, 46–60. doi: 10.3758/s13423-010-0034-0 CrossRefGoogle Scholar
  61. Mueller, C. M., & Dweck, C. S. (1998). Praise for intelligence can undermine children’s motivation and performance. Journal of Personality and Social Psychology, 75, 33–52.PubMedCrossRefGoogle Scholar
  62. Nystrom, L. E., Braver, T. S., Sabb, F. W., Delgado, M. R., Noll, D. C., & Cohen, J. D. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. NeuroImage, 11, 424–446.PubMedCrossRefGoogle Scholar
  63. Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Journal of Applied Developmental Psychology, 15, 33–58.CrossRefGoogle Scholar
  64. Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns, A. S., & Ballard, C. G. (2010). Putting brain training to the test. Nature, 465, 775–778.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25, 46–59.PubMedCrossRefGoogle Scholar
  66. Pickering, S. (Ed.). (2006). Working memory and education. Oxford: Elsevier.Google Scholar
  67. Rabipour, S., & Raz, A. (2012). Training the brain: Fact and fad in cognitive and behavioral remediation. Brain and Cognition, 79, 159–179. doi: 10.1016/j.bandc.2012.02.006 PubMedCrossRefGoogle Scholar
  68. Raven, J. C. (1990). Advanced Progressive Matrices: Sets I, II. Oxford: Oxford University Press.Google Scholar
  69. Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D., Hambrick, D. Z., & Engle, R. W. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142, 359–379. doi: 10.1037/a0029082 CrossRefGoogle Scholar
  70. Rudebeck, S. R., Bor, D., Ormond, A., O’Reilly, J. X., & Lee, A. C. (2012). A potential spatial working memory training task to improve both episodic memory and fluid intelligence. PLoS ONE, 7, e50431. doi: 10.1371/journal.pone.0050431 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L., ∓ Posner, M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14931-14936.Google Scholar
  72. Salminen, T., Strobach, T., & Schubert, T. (2012). On the impacts of working memory training on executive functioning. Frontiers in Human Neuroscience, 6, 166. doi: 10.3389/fnhum.2012.00166 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, 27. doi: 10.3389/fnagi.2010.00027 PubMedCentralPubMedGoogle Scholar
  74. Schweizer, S., Hampshire, A., & Dalgleish, T. (2011). Extending brain-training to the affective domain: Increasing cognitive and affective executive control through emotional working memory training. PLoS ONE, 6, e24372. doi: 10.1371/journal.pone.0024372 PubMedCentralPubMedCrossRefGoogle Scholar
  75. Seidler, R. D., Bernard, J. A., Buschkuehl, M., Jaeggi, S., Jonides, J., & Humfleet, J. (2010). Cognitive training as an intervention to improve driving ability in the older adult (Technical Report No. M-CASTL 2010-01). Ann Arbor: University of Michigan.Google Scholar
  76. Shah, P., Buschkuehl, M., Jaeggi, S. M., & Jonides, J. (2012). Cognitive Training for ADHD: The Importance of Individual Differences. Journal of Applied Research in Memory and Cognition, 1, 204–205.CrossRefGoogle Scholar
  77. Shah, P., & Miyake, A. (1999). Models of working memory: An introduction. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanism of active maintenance and executive control (pp. 1–26). New York: Cambridge University Press.CrossRefGoogle Scholar
  78. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138, 628–654. doi: 10.1037/a0027473 PubMedCrossRefGoogle Scholar
  79. Stephenson, C. L., & Halpern, D. F. (2013). Improved matrix reasoning is limited to training on tasks with a visuospatial component. Intelligence, 41, 341–357.CrossRefGoogle Scholar
  80. Studer-Luethi, B., Jaeggi, S. M., Buschkuehl, M., & Perrig, W. J. (2012). Influence of neurotisicm and conscientiousness on working memory training outcome. Personality and Individual Differences, 53(1), 44-49. doi: 10.1016/j.paid.2012.02.012
  81. Takeuchi, H., Taki, Y., Nouchi, R., Hashizume, H., Sekiguchi, A., Kotozaki, Y., & Kawashima, R. (2013). Effects of working memory training on functional connectivity and cerebral blood flow during rest. Cortex, 49, 2106–2125. doi: 10.1016/j.cortex.2012.09.007 PubMedCrossRefGoogle Scholar
  82. Terlecki, M. S., Newcombe, N. S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology, 22, 996–1013. doi: 10.1002/Acp.1420 CrossRefGoogle Scholar
  83. Thompson, T. W., Waskom, M. L., Garel, K. L., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., & Gabrieli, J. D. (2013). Failure of working memory training to enhance cognition or intelligence. PLoS ONE, 8, e63614. doi: 10.1371/journal.pone.0063614 PubMedCentralPubMedCrossRefGoogle Scholar
  84. Thorell, L. B., Lindqvist, S., Bergman Nutley, S., Bohlin, G., & Klingberg, T. (2009). Training and transfer effects of executive functions in preschool children. Developmental Science, 12, 106–113.PubMedCrossRefGoogle Scholar
  85. Tomic, W., & Klauer, K. J. (1996). On the effects of training inductive reasoning: How far does it transfer and how long do the effects persist? European Journal of Psychology of Education, 11, 283–299.CrossRefGoogle Scholar
  86. Van der Molen, M. J., Van Luit, J. E. H., Van der Molen, M. W., Klugkist, I., & Jongmans, M. J. (2010). Effectiveness of a computerised working memory training in adolescents with mild to borderline intellectual disabilities. Journal of Intellectual Disability Research, 54, 433–447.PubMedCrossRefGoogle Scholar
  87. Verhaeghen, P., Marcoen, A., & Goossens, L. (1992). Improving memory performance in the aged through mnemonic training: A meta-analytic study. Psychology and Aging, 7, 242–251. doi: 10.1037/0882-7974.7.2.242 PubMedCrossRefGoogle Scholar
  88. von Bastian, C. C., & Oberauer, K. (2013). Distinct transfer effects of training different facets of working memory capacity. Journal of Memory and Language, 69, 36–58. doi: 10.1016/j.jml.2013.02.002 CrossRefGoogle Scholar
  89. Wechsler, D. (1997). Wechsler Adult Intelligence Scale (3rd ed.). San Antonio: Psychological Corp.Google Scholar
  90. Whisman, M. A. (1990). The efficacy of booster maintenance sessions in behavior therapy: Review and methodological critique. Clinical Psychology Review, 10, 155–170.CrossRefGoogle Scholar
  91. Wiley, J., & Jarosz, A. F. (2012). How working memory capacity affects problem solving. Psychology of Learning and Motivation, 56, 185–227.CrossRefGoogle Scholar
  92. Witt, M. (2011). School based working memory training: Preliminary finding of improvement in children’s mathematical performance. Advances in Cognitive Psychology, 7, 7–15. doi: 10.2478/v10053-008-0083-3 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S., & Kosslyn, S. M. (2008). Training generalized spatial skills. Psychonomic Bulletin & Review, 15, 763–771. doi: 10.3758/PBR.15.4.763 CrossRefGoogle Scholar
  94. Zelinski, E. M. (2009). Far transfer in cognitive training of older adults. Restorative Neurology and Neuroscience, 27, 455–471.PubMedGoogle Scholar
  95. Zhao, X., Wang, Y. X., Liu, D. W., & Zhou, R. L. (2011). Effect of updating training on fluid intelligence in children. Chinese Science Bulletin, 56, 2202–2205.CrossRefGoogle Scholar
  96. Zinke, K., Zeintl, M., Eschen, A., Herzog, C., & Kliegel, M. (2011). Potentials and limits of plasticity induced by working memory training in old-old age. Gerontology, 58, 79–87. doi: 10.1159/000324240 PubMedCrossRefGoogle Scholar
  97. Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2013). Working memory training and transfer in older adults: Effects of age, baseline performance, and training gains. Developmental Psychology. doi: 10.1037/a0032982

Copyright information

© Psychonomic Society, Inc. 2013

Authors and Affiliations

  • Susanne M. Jaeggi
    • 1
  • Martin Buschkuehl
    • 1
    • 2
  • Priti Shah
    • 3
  • John Jonides
    • 3
  1. 1.School of EducationUniversity of California, IrvineIrvineUSA
  2. 2.MIND Research InstituteIrvineUSA
  3. 3.Department of PsychologyUniversity of MichiganAnn ArborUSA

Personalised recommendations