Agren, T., Engman, J., Frick, A., Björkstrand, J., Larsson, E. M., Furmark, T., & Fredrikson, M. (2012a). Disruption of reconsolidation erases a fear memory trace in the human amygdala. Science, 337, 1150–1552.
Article
Google Scholar
Agren, T., Furmark, T., Eriksson, E., & Fredrikson, M. (2012b). Human fear reconsolidation and allelic differences in serotonergic and dopaminergic genes. Translational Psychiatry, 2(2), e76–e76.
PubMed
PubMed Central
Article
Google Scholar
Asthana, M. K., Brunhuber, B., Mühlberger, A., Reif, A., Schneider, S., & Herrmann, M. J. (2015). Preventing the return of fear using reconsolidation update mechanisms depends on the met-allele of the brain derived neurotrophic factor Val66Met polymorphism. International Journal of Neuropsychopharmacology. https://doi.org/10.1093/ijnp/pyv137
Auber, A., Tedesco, V., Jones, C. E., Monfils, M. H., & Chiamulera, C. (2013). Post-retrieval extinction as reconsolidation interference: Methodological issues or boundary conditions? Psychopharmacology, 226(4), 631–647.
PubMed
PubMed Central
Article
Google Scholar
Auchter, A., Shumake, J., Gonzalez-Lima, F., et al. (2017). Preventing the return of fear using reconsolidation updating and methylene blue is differentially dependent on extinction learning. Scientific Reports, 7, 46071. https://doi.org/10.1038/srep46071
Article
PubMed
PubMed Central
Google Scholar
Bandarian Balooch, S., & Neumann, D. L. (2011). Effects of multiple contexts and context similarity on the renewal of extinguished conditioned behavior in an ABA design with humans. Learning and Motivation, 42, 53–63. https://doi.org/10.1016/j.lmot.2010.08.008
Article
Google Scholar
Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269, 1115–1118.
PubMed
Article
Google Scholar
Björkstrand, J., Agren, T., Åhs, F., Frick, A., Larsson, E.-M., Hjorth, O., Furmark, T., & Fredrikson, M. (2016). Disrupting reconsolidation attenuates long-term fear memory in the human amygdala and facilitates approach behavior. Current Biology, 26, 2690–2695. https://doi.org/10.1016/j.cub.2016.08.022
Article
PubMed
Google Scholar
Björkstrand, J., Agren, T., Frick, A., Engman, J., Larsson, E. M., Furmark, T., & Fredrikson, M. (2015). Disruption of memory reconsolidation erases a fear memory trace in the human amygdala: An 18-month follow up. PloS One., 10, e0129393.
PubMed
PubMed Central
Article
Google Scholar
Bouton, M. E. (1988). Context and ambiguity in the extinction of emotional learning: Implications for exposure therapy. Behavior Research and Therapy, 26(2), 137–149.
Article
Google Scholar
Bouton, M. E. (1993). Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychological Bulletin, 114, 80–99. https://doi.org/10.1037/0033-2909.114.1.80
Article
PubMed
Google Scholar
Bouton, M. E. (2002). Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biological Psychiatry, 52, 976–986. https://doi.org/10.1016/S0006-3223(02)01546-9
Article
PubMed
Google Scholar
Bouton, M. E. (2014). Why behavior change is difficult to sustain. Preventive Medicine, 68, 29–36. https://doi.org/10.1016/j.ypmed.2014.06.010
Article
PubMed
Google Scholar
Bouton, M. E., & Woods, A. M. (2008). Extinction: Behavioral mechanisms and their implications. In J. H. Byrne (Ed.), Learning theory and behavior, Learning and memory: A comprehensive reference (Vol. 1, pp. 151–172). Elsevier.
Google Scholar
Çetinkaya, H. (2018). Naturalistic stimuli. In J. Vonk, T. Shackelford (Eds.), Encyclopedia of animal cognition and behavior. Springer. https://doi.org/10.1007/978-3-319-47829-6_2019-1
Chan, W. Y., Leung, H. T., Westbrook, R. F., & McNally, G. P. (2010). Effects of recent exposure to a conditioned stimulus on extinction of Pavlovian fear conditioning. Learning and Memory. 30, 17(10), 512-21. https://doi.org/10.1101/lm.1912510
Chen, W., Li, J., Xu, L., Zhao, S., Fan, M., & Zheng, X. (2021). Destabilizing different strengths of fear memories requires different degrees of prediction error during retrieval. Frontiers in Behavioral Neuroscience, 14, 598924. https://doi.org/10.3389/fnbeh.2020.598924
Article
PubMed
PubMed Central
Google Scholar
Chen, Y., Lin, X., Ai, S., Sun, Y., Shi, L., Meng, S., Lu, L., & Shi, J. (2022). Comparing three extinction methods to reduce fear expression and generalization. Behavioural Brain Research, 420, 113714.
PubMed
Article
Google Scholar
Cook, M., & Mineka, S. (1987). Second-order conditioning and overshadowing in the observational conditioning of fear in monkeys. Behaviour Research and Therapy, 25(5), 349–364. https://doi.org/10.1016/0005-7967(87)90013-1
Article
PubMed
Google Scholar
Craske, M. G., Hermans, D., & Vervliet, B. (2018). State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philosophical Transactions of the Royal Society B, 373, 20170025. https://doi.org/10.1098/rstb.2017.0025
Article
Google Scholar
Craske, M. G., Treanor, M., Conway, C. C., Zbozinek, T., & Vervliet, B. (2014). Maximizing exposure therapy: an inhibitory learning approach. Behaviour Research and Therapy, 58, 10–23.
PubMed
PubMed Central
Article
Google Scholar
Cusato, B., & Domjan, M. (1998). Special efficacy of sexual conditioned stimuli that include species typical cues: Tests with a conditioned stimuli preexposure design. Learning and Motivation, 29(2), 152–167. https://doi.org/https://doi.org/10.1006/lmot.1997.0988
Delamater, A. R. (2004). Experimental extinction in Pavlovian conditioning: Behavioural and neuroscience perspectives. Quarterly Journal of Experimental Psychology, 57, 97–132.
Article
Google Scholar
Delgado, M. R., Olsson, A., & Phelps, E. A. (2006). Extending animal models of fear conditioning to humans. Biological Psychology, 73, 39–48.
PubMed
Article
Google Scholar
Dirikx, T., Hermans, D., Vansteenwegen, D., Baeyens, F., & Eelen, P. (2004). Reinstatement of extinguished conditioned responses and negative stimulus valence as a pathway to return of fear in humans. Learning & Memory, 11(5), 549–554.
Article
Google Scholar
Domjan, M. (1994). Formulation of a behavior system for sexual conditioning. Psychonomic bulletin & review, 1, 421–428. https://doi.org/10.3758/BF03210946
Article
Google Scholar
Domjan, M. (2000). General process learning theory: Challenges from response and stimulus factors. International Journal of Comparative Psychology, 13, 101–118.
Google Scholar
Domjan, M. (2005). Pavlovian conditioning: A functional perspective. Annual Review of Psychology, 56, 179–206.
PubMed
Article
Google Scholar
Domjan, M. (2008). Adaptive specializations and generality of the laws of classical and instrumental conditioning. In J. Byrne (Ed.) Learning and Memory: A comprehensive reference. (Vol. 1, Learning and Behavior Theory, R. Menzel, Ed., pp. 327-340.) Oxford: Elsevier. https://doi.org/10.1016/B978-012370509-9.00183-2
Domjan, M. (2018). The essentials of conditioning and learning. American Psychological Association.
Book
Google Scholar
Domjan, M., & Galef, B. G. (1983). Biological constraints on instrumental and classical conditioning: Retrospect and prospect. Animal Learning & Behavior, 11, 151–161.
Article
Google Scholar
Domjan, M., & Krause, M. (2017). Generality of the laws of learning: From biological constraints to ecological perspectives. In J. Byrne (Ed.), Learning and Memory: A Comprehensive Reference (Second ed., pp. 189–201). Academic Press.
Chapter
Google Scholar
Domjan, M., Akins, C., & Vandergriff, D. H. (1992). Increased responding to female stimuli as a result of sexual experience: Tests of mechanisms of learning. The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 45B(2), 139–157. https://doi.org/https://doi.org/10.1080/14640749208401014.
Domjan, M., Cusat, B., & Krause, M. (2004). Learning with arbitrary versus ecological conditioned stimuli: Evidence from sexual conditioning. Psychonomic Bulletin & Review, 11(2), 232–246.
Article
Google Scholar
Fanselow, M. S., & Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In R. C. Bolles & M. D. Beecher (Eds.), Evolution and Behavior (pp. 185–212). Erlbaum.
Google Scholar
Fendt, M., & Fanselow, M. S. (1999). The neuroanatomical and neurochemical basis of conditioned fear. Neuroscience and Biobehavioral Reviews, 23, 743–760.
PubMed
Article
Google Scholar
Field, A. P. (2006). Is conditioning a useful framework for understanding the development and treatment of phobias. Clinical Psychology Review, 26, 857–875.
PubMed
Article
Google Scholar
Finnie, P. S., & Nader, K. (2012). The role of metaplasticity mechanisms in regulating memory destabilization and reconsolidation. Neuroscience Biobehavior Review, 36(7), 1667–1707. https://doi.org/10.1016/j.neubiorev.2012.03.008
Article
Google Scholar
Fitzgerald, P. J., Seemann, J. R., & Maren, S. (2014). Can fear extinction be enhanced? a review of pharmacological and behavioral findings. Brain Research Bulletin, 105, 46–60.
PubMed
Article
Google Scholar
Fitzgerald, R. D. (1963). Effects of partial reinforcement with acid on the classically conditioned salivary response in dogs. Journal of Comparative and Physiological Psychology, 56, 1056–1060.
PubMed
Article
Google Scholar
Flavell, C. R., & Lee, J. L. (2011). Behavioural memory reconsolidation of food and fear memories. Nature Communications, 2, 504.
PubMed
Article
Google Scholar
Fricchione, J., Greenberg, M. S., Spring, J., Wood, N., Mueller-Pfeiffer, C., Milad, M. R., Pitman, R. K., & Orr, S. P. (2016). Delayed extinction fails to reduce skin conductance reactivity to fear-conditioned stimuli: Delayed extinction fails to reduce reactivity. Psychophysiology, 53, 1343–1351. https://doi.org/10.1111/psyp.12687
Article
PubMed
Google Scholar
Garcia, J., Hankins, W. G., & Rusiniak, K. W. (1974). Behavioral regulation of the milieu interne in man and rat. Science, 185, 824–831.
PubMed
Article
Google Scholar
Gibbon, J., Farrell, L., Locurto, C. M., Duncan, H. J., & Terrace, H. S. (1980). Partial reinforcement in autoshaping with pigeons. Animal Learning and Behavior, 8, 45–59.
Article
Google Scholar
Gibbs, C. M., Latham, S. B., & Gormezano, I. (1978). Classical conditioning of the rabbit nictitating membrane response: Effects of reinforcement schedule on response maintenance and resistance to extinction. Animal Learning and Behavior, 6, 209–215.
PubMed
Article
Google Scholar
Gisquet-Verrier, P., & Riccio, D. (2012). Memory reactivation effects independent of reconsolidation. Learning and Memory, 19, 401–409.
PubMed
Article
Google Scholar
Golkar, A., Bellander, M., Olsson, A., & Öhman, A. (2012). Are fear memories erasable? Reconsolidation of learned fear with fear-relevant and fear-irrelevant stimuli. Frontiers in Behavioral Neuroscience, 6, 1–10.
Article
Google Scholar
Grady, A. K., Bowen, K. H., Hyde, A. T., Totsch, S. K., & Knight, D. C. (2016). Effect of continuous and partial reinforcement on the acquisition and extinction of human conditioned fear. Behavioral Neuroscience, 130(1), 36.
PubMed
Article
Google Scholar
Hilliard, S., Domjan, M., Nguyen, M., et al. (1998). Dissociation of conditioned appetitive and consummatory sexual behavior: Satiation and extinction tests. Animal Learning & Behavior, 26, 20–33. https://doi.org/10.3758/BF03199159
Article
Google Scholar
Hoehl, S., Hellmer, K., Johansson, M., & Gredebäck, G. (2017). Itsy bitsy spider…: Infants react with increased arousal to spiders and snakes. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2017.01710
Hollis, K. L. (1982). Pavlovian conditioning of signal-centered action patterns and autonomic behavior: a biological analysis of function. Advances in the Study of Behavior, 12, 1–64.
Article
Google Scholar
Hollis, K. L. (1997). Contemporary research on Pavlovian conditioning: a “new” functional analysis. American Psychologist, 52, 956–965.
PubMed
Article
Google Scholar
Horsley, R. R., Osborne, M., Norman, C., & Wells, T. (2012). High frequency gamblers show increased resistance to extinction following partial reinforcement. Behavioural Brain Research, 229, 438–442. https://doi.org/10.1016/j.bbr.2012.01.024
Article
PubMed
Google Scholar
Hugdahl, K., & Jonsen, B. H. (1988). Preparedness and electrodermal fear-conditioning: Ontogenetic vs phylogenetic explanations. Behaviour Research and Therapy, 27(3), 269–278.
Article
Google Scholar
Ishida, M., & Papini, M. R. (1997). Massed-trial overtraining effects on extinction and reversal performance in turtles (Geoclemys reevesii). The Quarterly Journal of Experimental Psychology B: Comparative and Physiological Psychology, 50B(1), 1–16.
Article
Google Scholar
Johnson, D. C., & Casey, B. J. (2015). Extinction during memory reconsolidation blocks recovery of fear in adolescents. Scientific Reports, 5, 8863. https://doi.org/10.1038/srep08863
Article
PubMed
PubMed Central
Google Scholar
Jones, C. E., & Monfils, M. H. (2016). Post-retrieval extinction in adolescence prevents return of juvenile fear. Learning & Memory, 23, 567–575.
Article
Google Scholar
Keller, N. E., & Dunsmoor, J. E. (2020). The effects of aversive-to-appetitive counterconditioning on implicit and explicit fear memory. Learning and Memory, 27, 12–19.
PubMed
PubMed Central
Article
Google Scholar
Kindt, M., & Soeter, M. (2013). Reconsolidation in a human fear conditioning study: A test of extinction as updating mechanism. Biological Psychology, 92(1), 43–50.
PubMed
Article
Google Scholar
Kindt, M., Soeter, M., & Vervliet, B. (2009). Beyond extinction: Erasing human fear responses and preventing the return of fear. Nature Neuroscience, 12(3), 256–258.
PubMed
Article
Google Scholar
Klucken, T., Kruse, O., Schweckendiek, J., Kuepper, Y., Mueller, E. M., Hennig, J., & Stark, R. (2016). No evidence for blocking the return of fear by disrupting reconsolidation prior to extinction learning. Cortex, 79, 112–122. https://doi.org/10.1016/j.cortex.2016.03.015
Article
PubMed
Google Scholar
Köksal, F., Domjan, M., & Weisman, G. (1994). Blocking of the sexual condiyioning of differentially effective conditioned-stimulus objects. Animal Learning and Behavior. https://doi.org/10.3758/BF03199962
Krause, M. A., Cusato, B., & Domjan, M. (2003). Extinction of conditioned sexual responses in male Japanese quail (Coturnix japonica): role of species-typical cues. Journal of Comparative Psychology, 117(1), 76–86. https://doi.org/https://doi.org/10.1037/0735-7036.117.1.76
Kredlow, M. A., Unger, L. D., & Otto, M. W. (2016). Harnessing reconsolidation to weaken fear and appetitive memories: A meta-analysis of post-retrieval extinction effects. Psychological Bulletin, 142(3), 314–336. https://doi.org/10.1037/bul0000034
Article
PubMed
Google Scholar
Laborda, M. A., & Miller, R. R. (2012). Reactivated memories compete for expression after Pavlovian extinction. Behavioural Processes, 90, 20–27. https://doi.org/10.1016/j.beproc.2012.01.012
Article
PubMed
PubMed Central
Google Scholar
Laborda, M. A., & Miller, R. R. (2013). Preventing return of fear in an animal model of anxiety: additive effects of massive extinction and extinction in multiple contexts. Behavior Therapy, 44, 249–261.
PubMed
Article
Google Scholar
Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (2005). International affective picture System (IAPS): affective ratings of pictures and instruction manual, Technical Report A-5. University of Florida.
Google Scholar
Lang, P. J., Greenwald, M. K., Bradley, M. M., & Hamm, A. O. (1993). Looking at pictures: Affective, facial, visceral, and behavioral reactions. Psychophysiology, 30, 261–273. https://doi.org/10.1111/j.1469-8986.1993.tb03352.x
Article
PubMed
Google Scholar
Lee, J. L. C., Nader, K., & Schiller, D. (2017). An update on memory reconsolidation updating. Trends in Cognitive Sciences, 21(7), 531–545. https://doi.org/10.1016/j.tics.2017.04.006
Article
PubMed
PubMed Central
Google Scholar
Leung, H. T., Reeks, L. M., & Westbrook, R. F. (2012). Two ways to deepen extinction and the difference between them. Journal of Experimental Psychology. Animal Behavior Processes, 38, 394–406.
PubMed
Article
Google Scholar
Leung, H. T., Bailey, G. K., Laurent, V., & Westbrook, R. F. (2007). Rapid reacquisition of fear to a completely extinguished context is replaced by transient impairment with additional extinction training. Journal of Experimental Psychology: Animal Behavior Processes, 33, 299–313. https://doi.org/10.1037/0097-7403.33.3.299
Article
PubMed
Google Scholar
Lissek, S., Powers, A. S., McClure, E. B., Phelps, E. A., Woldehawariat, G., Grillon, C., & Pine, D. S. (2005). Classical fear conditioning in the anxiety disorders: a meta-analysis. Behaviour Research and Therapy, 43, 1391–1424. https://doi.org/10.1016/j.brat.2004.10.007
Article
PubMed
Google Scholar
Liu, J., Zhao, L., Xue, Y., Shi, J., Suo, L., Luo, Y., Chai, B., Yang, C., Fang, Q., Zhang, Y., Bao, Y., Pickens, C. L., & Lu, L. (2014). An unconditioned stimulus retrieval extinction procedure to prevent the return of fear memory. Biological Psychiatry, 76, 895–901. https://doi.org/10.1016/j.biopsych.2014.03.027
Article
PubMed
PubMed Central
Google Scholar
Maren, S., & Holmes, A. (2016). Stress and fear extinction. Neuropsychopharmacology, 41, 58–79. https://doi.org/10.1038/npp.2015.180
Article
PubMed
Google Scholar
McNally, R. J. (1987). Preparedness and phobias: A review. Psychological Bulletin, 101, 283–303.
PubMed
Article
Google Scholar
Meir Drexler, S., Merz, C. J., Hamacher-Dang, T. C., Marquardt, V., Fritsch, N., Otto, T., & Wolf, O. T. (2014). Effects of post retrieval-extinction learning on return of contextually controlled cued fear. Behavioral Neuroscience, 128, 474–481. https://doi.org/10.1037/a0036688
Article
PubMed
Google Scholar
Mertens, G., Wagensveld, P., & Engelhard, I. M. (2019). Cue conditioning using a virtual spider discriminates between high and low spider fearful individuals. Computers in Human Behavior, 91, 192–200.
Article
Google Scholar
Miller, R. R., & Matzel, L. D. (2000). Memory involves far more than “consolidation”. Nature Reviews Neuroscience, 1, 214–216. https://doi.org/10.1038/35044578
Article
PubMed
Google Scholar
Mineka, S., & Öhman, A. (2002). Phobias and preparedness: The selective, automatic, and encapsulated nature of fear. Biological Psychiatry, 52(10), 927–937.
PubMed
Article
Google Scholar
Misanin, J. R., Miller, R. R., & Lewis, D. J. (1968). Retrograde amnesia produced by electroconvulsive shock after retrieval of a consolidated memory trace. Science, 80(160), 554–555. https://doi.org/10.1109/LASCAS.2014.6820259
Article
Google Scholar
Monfils, M.-H., Cowansage, K. K., Klann, E., & LeDoux, J. E. (2009). Extinction-reconsolidation boundaries: Key to persistent attenuation of fear memories. Science, 324, 951–955. https://doi.org/10.1126/science.1167975.
Article
PubMed
PubMed Central
Google Scholar
Mugnaini, M., Alfei, J. M., Bueno, A. M., Monti, R. I. F., Urcelay, G. P., & Gonzalo, P. (2022). Fear memory modulation by incentive down and up-shifts. Behavioural Brain Research, 422, 113766. https://doi.org/10.1016/j.bbr.2022.113766
Article
PubMed
Google Scholar
Myers, K. M., & Davis, M. (2007). Mechanisms of fear extinction. Molecular Psychiatry, 12, 120–150.
PubMed
Article
Google Scholar
Myers, K. M., Ressler, K. J., & Davis, M. (2006). Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learning and Memory, 13, 216–223.
PubMed
PubMed Central
Article
Google Scholar
Nader, K., Schafe, G. E., & Le Doux, J. E. (2000). Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature., 406, 722–726.
PubMed
Article
Google Scholar
Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108(3), 483.
PubMed
Article
Google Scholar
Öhman, A., Erixon, G., & Lofberg, I. (1975). Phobias and preparedness: Phobic versus neutral pictures as conditioned stimuli for human autonomic responses. Journal of Abnormal Psychology, 84, 41–45.
PubMed
Article
Google Scholar
Öhman, A., Fredrikson, M., Hugdahl, K., & Rimmo, P. A. (1976). The premise of equipotentiality in human classical conditioning: Conditioned electrodermal responses to potentially phobic stimuli. Journal of Experimental Psychology: General, 103, 313–337.
Article
Google Scholar
Oyarzún, J. P., Lopez-Barroso, D., Fuentemilla, L., Cucurell, D., Pedraza, C., Rodriguez-Fornells, A., & de Diego-Balaguer, R. (2012). Updating fearful memories with extinction training during reconsolidation: A human study using auditory aversive stimuli. PloS One, 7(6), e38849.
PubMed
PubMed Central
Article
Google Scholar
Pearce, J. M., Redhead, E. S., & Aydin, A. (1997). Partial reinforcement in appetitive Pavlovian conditioning with rats. Quarterly Journal of Experimental Psychology, 50B, 274–294.
Google Scholar
Phelps, E. A., O'Connor, K. J., Gatenby, J. C., Grillon, C., Gore, J. C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4, 437–441.
PubMed
Article
Google Scholar
Piñeyro, M. E., Monti, R. I. F., Alfei, J. M., Bueno, A. M., & Urcelay, G. P. (2014). Memory destabilization is critical for the success of the reactivation–extinction procedure. Learning & Memory, 21, 46–54. https://doi.org/10.1101/lm.032714.113
Article
Google Scholar
Prokasy, W. F., & Kumpfer, K. L. (1973). Classical conditioning. In W. F. Prokasy & D. C. Raskin (Eds.), Electrodermal activity in psychological research. Academic Press.
Google Scholar
Quirk, G. J. (2002). Memory for extinction of conditioned fear is long- lasting and persists following spontaneous recovery. Learning and Memory, 9, 402–407.
PubMed
PubMed Central
Article
Google Scholar
Rescorla, R. A. (1993). Inhibitory associations between S and R in extinction. Animal Learning & Behavior, 21, 327–336. https://doi.org/10.3758/BF03197998
Article
Google Scholar
Rescorla, R. A. (1999). Partial reinforcement reduces the associative change produced by nonreinforcement. Journal of Experimental Psychology: Animal Behavior Processes, 25, 403–414.
Google Scholar
Rescorla, R. A. (2001). Retraining of extinguished Pavlovian stimuli. Journal of Experimental Psychology: Animal Behavior Processes, 27(2), 115–124. https://doi.org/https://doi.org/10.1037/0097-7403.27.2.115
Rescorla, R. A. (2004). Spontaneous Recovery. Learning and Memory, 11, 501–509.
PubMed
Article
Google Scholar
Rescorla, R. A., & Heth, C. D. (1975). Reinstatement of fear to an extinguished conditioned stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 1, 88–96.
PubMed
Google Scholar
Rozin, P., & Kalat, J. W. (1971). Specific hungers and poison avoidance as adaptive specializations of learning. Psychological Review, 78, 459–486.
PubMed
Article
Google Scholar
Sara, S. J. (2000). Retrieval and reconsolidation: toward a neurobiology of remembering. Learning & Memory, 7, 73–84.
Article
Google Scholar
Schafe, G. E., & LeDoux, J. E. (2000). Memory consolidation of auditory pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. Journal of Neuroscience, 20, RC96.
PubMed
Article
Google Scholar
Schafe, G. E., Nader, K. E., & Le Doux, J. (2000). The labile nature of consolidation theory. Nature, 406, 722–726. https://doi.org/10.1038/35044580
Article
PubMed
Google Scholar
Schiller, D., & Phelps, E. A. (2011). Does reconsolidation occur in humans? Frontiers in Behavioral Neuroscience, 5, 24.
PubMed
PubMed Central
Article
Google Scholar
Schiller, D., Kanen, J. W., LeDoux, J. E., Monfils, M. H., & Phelps, E. A. (2013). Extinction during reconsolidation of threat memory diminishes prefrontal cortex involvement. Proceedings of the National Academy of Sciences, 110(50), 20040–20045.
Article
Google Scholar
Schiller, D., Monfils, M. H., Raio, C. M., Johnson, D. C., LeDoux, J. E., & Phelps, E. A. (2010). Preventing the return of fear in humans using reconsolidation update mechanisms. Nature, 463, 49–53.
PubMed
Article
Google Scholar
Seligman, M. E. P. (1970). On the generality of the laws of learning. Psychological Review, 77, 406–418.
Article
Google Scholar
Seligman, M. E. P., & Hager, J. L. (1972). Biological boundaries of learning. Appleton-Century-Crofts.
Google Scholar
Shettleworth, S. J. (1998). Cognition, evolution, and behavior. Oxford University Press.
Google Scholar
Sizhen, S., et al. (2022). Continuous theta-burst stimulation over the right dorsolateral prefrontal cortex disrupts fear memory reconsolidation in humans. iScience, 25(1), 103614.
Article
Google Scholar
Slivka, R. M., & Bitterman, M. E. (1966). Classical appetitive conditioning in the pigeon: Partial reinforcement. Psychonomic Science, 4, 181–182.
Article
Google Scholar
Soeter, M., & Kindt, M. (2011). Disrupting reconsolidation: pharmacological and behavioral manipulations. Learning & Memory, 18(6), 357–366.
Article
Google Scholar
Soeter, M., & Kindt, M. (2013). High trait anxiety: A challenge for disrupting fear memory reconsolidation. PloS One, 8(11), e75239. https://doi.org/10.1371/journal.pone.0075239
Article
PubMed
PubMed Central
Google Scholar
Steinfurth, E. C., Kanen, J. W., Raio, C. M., Clem, R. L., Huganir, R. L., & Phelps, E. A. (2014). Young and old Pavlovian fear memories can be modified with extinction training during reconsolidation in humans. Learning & Memory, 21(7),338–341. http://dx.doi.org/https://doi.org/10.1101/lm.033589.113
Suzuki, A., Josselyn, S. A., Frankland, P. W., Masushige, S., Silva, A. J., & Kida, S. (2004). Memory reconsolidation and extinction have distinct temporal and biochemical signatures. Journal of Neuroscience, 24, 4787–4795. 10.1523/jneurosci.5491–03.2004
Thompson, A., & Lipp, O. V. (2017). Extinction during reconsolidation eliminates recovery of fear conditioned to fear-irrelevant and fear-relevant stimuli. Behaviour Research and Therapy, 92, 1–10. https://doi.org/10.1016/j.brat.2017.01.017
Article
PubMed
Google Scholar
Timberlake, W. (1983). The functional organization of appetitive behavior: Behavior systems and learning. In M. D. Zeiler & P. Harzem (Eds.), Advances in analysis of behaviour: Vol. 3. Biological factors (pp. 177–221). Wiley.
Google Scholar
Todd, T. P., Vurbic, D., & Bouton, M. E. (2014). Behavioral and neurobiological mechanisms of extinction in Pavlovian and instrumental learning. Neurobiology of Learning and Memory, 108, 52–64. https://doi.org/10.1016/j.nlm.2013.08.012
Article
PubMed
Google Scholar
Tronson, N. C., & Taylor, J. R. (2007). Molecular mechanisms of memory reconsolidation. Nature Reviews Neuroscience, 8(4), 262–275.
PubMed
Article
Google Scholar
Urcelay, G. P., Wheeler, D. S., & Miller, R. R. (2009). Spacing extinction trials alleviates renewal and spontaneous recovery. Learning & Behavior, 37, 60–73. https://doi.org/10.3758/LB.37.1.60
Article
Google Scholar
Wang, S. H., de Oliveira Alvares, L., & Nader, K. (2009). Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation. Nature Neuroscience, 12, 905–912. https://doi.org/10.1038/nn.2350
Article
PubMed
Google Scholar
Westfall, J. (2016). PANGEA (v0.2): Power ANalysis for GEneral Anova designs [Computer software]. https://jakewestfall. shinyapps.io/pangea/
WHO. (2021). Snakebite envenoming. https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming
Winters, B. D., Tucci, M. C., & DaCosta-Furtado, M. (2009). Older and stronger object memories are selectively destabilized by reactivation in the presence of new information. Learning & Memory, 16(9), 545–553. https://doi.org/10.1101/lm.1509909
Article
Google Scholar
Zuccolo, P. F., & Hunziker, M. H. L. (2019). A review of boundary conditions and variables involved in the prevention of return of fear after post-retrieval extinction. Behavioural Processes, 162, 39–54. https://doi.org/10.1016/j.beproc.2019.01.011
Article
PubMed
Google Scholar