Plasticity in the hippocampal formation of shorebirds during the wintering period: Stereological analysis of parvalbumin neurons in Actitis macularius

Abstract

The number of parvalbumin neurons can be modified by social, multisensory, and cognitive stimuli in both mammals and birds, but nothing is known about their plasticity in long-distance migratory shorebirds. Here, in the spotted sandpiper (Actitis macularius), we investigated the plasticity of parvalbumin neurons of two brain areas during this species’ wintering period at a lower latitude. We compared individuals in a nonmigratory rest period (November–January) and premigration (May–July) period. We used parvalbumin as a marker for counting a subpopulation of inhibitory neurons in the hippocampal formation (HF), with the magnocellular nucleus of the tectal isthmus (IMC) as a control area. Because the HF is involved in learning and memory and social interaction and the IMC is essential for control of head, neck, and eye movements, we hypothesized that parvalbumin neurons would increase in the HF and remain unchanged in the IMC. We used an optical fractionator to estimate cell numbers. Compared with the nonmigratory rest birds, parvalbumin neuron count estimates in the premigration birds increased significantly in the HF but remained unchanged in IMC. We suggest that the greater number of parvalbuminergic neurons in the HF of A. macularius in the premigration period represents adaptive circuitry changes involved in the migration back to reproductive niches in the northern hemisphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Authors declare that under request, all qualitative and quantitative data will be shared.

References

  1. Arida, R. M., Scorza, C. A., Scorza, F. A., Gomes da Silva, S., Naffah-Mazzacoratti, M. G., & Cavalheiro, E. A. (2007). Effects of different types of physical exercise on the staining of parvalbumin-positive neurons in the hippocampal formation of rats with epilepsy. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 31(4), 814–22. https://doi.org/10.1016/j.pnpbp.2007.01.021

    Article  PubMed  Google Scholar 

  2. Barkan, S., Yom-Tov, Y., & Barnea, A. (2017). Exploring the relationship between brain plasticity, migratory lifestyle, and social structure in birds. Frontiers in Neuroscience, 11, 139. https://doi.org/10.3389/fnins.2017.00139

    Article  PubMed  PubMed Central  Google Scholar 

  3. Billerman, S. M., Keeney, B. K., Rodewald, P. G., & Schulenberg, T. S. (eds.). (2020). Birds of the world. Cornell Laboratory of Ornithology, Ithaca, NY

  4. Bingman, V. P., & Macdougall-Shackleton, S. A. (2017). The avian hippocampus and the hypothetical maps used by navigating migratory birds (with some reflection on compasses and migratory restlessness). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 203(6/7), 465–474. https://doi.org/10.1007/s00359-017-1161-0

    Article  PubMed  Google Scholar 

  5. Brenowitz, E. A., & Larson, T. A. (2015). Neurogenesis in the adult avian song-control system. Cold Spring Harbor Perspectives in Biology, 7(6), Article a019000. https://doi.org/10.1101/cshperspect.a019000

    Article  PubMed  Google Scholar 

  6. Capogna, M., Castillo, P. E., & Maffei, A. (2020). The ins and outs of inhibitory synaptic plasticity: Neuron types, molecular mechanisms and functional roles. The European Journal of Neuroscience. Advance online publication. https://doi.org/10.1111/ejn.14907

  7. Caroni, P. (2015a). Inhibitory microcircuit modules in hippocampal learning. Current Opinion in Neurobiology, 35, 66–73. https://doi.org/10.1016/j.conb.2015.06

    Article  PubMed  Google Scholar 

  8. Caroni, P. (2015b). Regulation of Parvalbumin Basket cell plasticity in rule learning. Biochemican and Biophysical Research Communications, 460(1), 100–103. https://doi.org/10.1016/j.bbrc.2015.02.023

    Article  Google Scholar 

  9. Carvalho-Paulo, D., de Morais Magalhães, N. G., de Almeida Miranda D., Diniz, D. G., Henrique, E. P., Moraes, I. A. M., Pereira, P. D. C., de Melo, M. A. D., de Lima, C. M., de Oliveira, M. A., Guerreiro-Diniz, C., Sherry, D. F., & Diniz, C. W. P. (2017). Hippocampal astrocytes in migrating and wintering semipalmated sandpiper. Frontiers in Neuroanatamy, 11, 126. https://doi.org/10.3389/fnana.2017.00126

    Article  Google Scholar 

  10. Chaudhury, S., Nag, T. C., & Wadhwa, S. (2006). Prenatal acoustic stimulation influences neuronal size and the expression of calcium-binding proteins (calbindin D-28K and parvalbumin) in chick hippocampus. Journal of Chemical Neuroanatamy, 32(2/4), 117–126. https://doi.org/10.1016/j.jchemneu.2006.07.002

    Article  Google Scholar 

  11. Cornez, G., Collignon, C., Müller, W., Ball, G. F., Cornil, C. A., & Balthazart, J. (2020). Seasonal changes of perineuronal nets and song learning in adult canaries (Serinus canaria). Behavior Brain Research, 380, Article 112437. https://doi.org/10.1016/j.bbr.2019.112437

    Article  Google Scholar 

  12. Cornez, G., Collignon, C., Müller, W., Cornil, C. A., Ball, G. F., & Balthazart, J. (2020). Development of perineuronal nets during ontogeny correlates with sensorimotor vocal learning in canaries. eNeuro, 7(2). https://doi.org/10.1523/ENEURO.0361-19.2020

  13. Cornez, G., Madison, F. N., Van der Linden, A., Cornil, C., Yoder, K. M., Ball, G. F., & Balthazart, J. (2017). Perineuronal nets and vocal plasticity in songbirds: A proposed mechanism to explain the difference between closed-ended and open-ended learning. Developmental Neurobiology, 77(8), 975–994. https://doi.org/10.1002/dneu.22485

    Article  PubMed  PubMed Central  Google Scholar 

  14. da Costa, E. R., Henrique, E. P., da Silva, J. B., Pereira, P. D. C., de Abreu, C. C., Fernandes, T. N., Magalhães, N. G. M., de Jesus Falcão da Silva, A., Guerreiro, A. C. F., Diniz, C. G., Diniz, C. W. P., & Diniz, D. G. (2020). Changes in hippocampal astrocyte morphology of ruddy turnstone (Arenaria interpres) during the wintering period at the mangroves of Amazon River estuary. Journal of Chemical Neuroanatamy, 108, Article 101805. https://doi.org/10.1016/j.jchemneu.2020.101805

    Article  Google Scholar 

  15. de Morais Magalhães, N. G., Diniz, C. G.,Diniz, D. G., Henrique, E. P., Pereira, P. D. C., Moraes, I. A. M., de Melo, M. A. D., Sherry, D. F., & Diniz, P. W. C. (2017). Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla). PLOS ONE, 12(6), Article e0179134. https://doi.org/10.1371/journal.pone.0179134

    Article  PubMed  Google Scholar 

  16. Diniz, C. G., Magalhães, N. G. M., Sousa, A. A., Santos Filho, C., Diniz, D. G., Lima, C. M., Oliveira, M. A., Paulo, D. C., Pereira, P. D. C., Sherry, D. F., Picanço-Diniz, C. W. (2016). Microglia and neurons in the hippocampus of migratory sandpipers. Brazilian Journal of Medical and Biological Research, 49(1). https://doi.org/10.1590/1414-431X20155005

  17. Donato, F.,Chowdhury, A., Lahr, M., & Caroni, P. (2015). Early- and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning. Neuron, 85(4), 770–786. https://doi.org/10.1016/j.neuron.2015.01.011

    Article  PubMed  Google Scholar 

  18. Faunes, M., Fernández, S., Gutiérrez-Ibáñez, C., Iwaniuk, A. N., Wylie, D. R., JMpodozis, J., Karten, H. J., & Marín, G. (2013). Laminar segregation of GABAergic neurons in the avian nucleus isthmi pars magnocellularis: a retrograde tracer and comparative study. The Journal of Comparative Neurology, 521(8), 1727–1742. https://doi.org/10.1002/cne.23253

    Article  PubMed  Google Scholar 

  19. Gainey, M. A., & Feldman, D. E. (2017). Multiple shared mechanisms for homeostatic plasticity in rodent somatosensory and visual cortex. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1715). https://doi.org/10.1098/rstb.2016.0157

  20. Glaser, J. R., & Glaser, E. M. (2000). Stereology, morphometry, and mapping: The whole is greater than the sum of its parts. Journal of Chemical Neuroanatomy, 20(1), 115–126. https://doi.org/10.1016/S0891-0618(00)00073-9

    Article  PubMed  Google Scholar 

  21. Henrique, E. P., de Oliveira, M. A., Paulo, D. C., Pereira, P. D. C., Dias, C., de Siqueira, L. S., de Lima, C. M., de Almeida Miranda, D., Sena do Rego, P., Araripe, J., de Melo, M. A. D., Diniz, D. G., de Morais Magalhães, N. G., Sherry, D. F., Diniz, C. W. P., & Diniz, D. G. (2020). Contrasting migratory journeys and changes in hippocampal astrocyte morphology in shorebirds. European Journal of Neuroscience. Advance online publication. https://doi.org/10.1111/ejn.14781

  22. Huberman, A. D., Feller, M. B., & Chapman, B. (2008). Mechanisms underlying development of visual maps and receptive fields. Annual Review of Neuroscience, 31, 479–509, https://doi.org/10.1146/annurev.neuro.31.060407.125533

    Article  PubMed  PubMed Central  Google Scholar 

  23. Karten, H. J. (2015). Vertebrate brains and evolutionary connectomics: on the origins of the mammalian ‘neocortex’. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1684). https://doi.org/10.1098/rstb.2015.0060

  24. Ling, H., Mclvor, G. E., van der Vaart, K., Vaughan, R. T., Thornton, A., & Ouellette, N. T. (2019). Costs and benefits of social relationships in the collective motion of bird flocks. Nature Ecology & Evolution, 3(6), 943–948. https://doi.org/10.1038/s41559-019-0891-5

    Article  Google Scholar 

  25. Mendes De Lima, C., Pereira, P. D. C., Henrique, E. P., de Oliveira, M. A., Paulo, D. C., de Siqueira, L. S., Diniz, D. G., Miranda, D. A., de Melo, M. A. D., de Morais Magalhães, N. G., Sherry, D. F., Diniz, C. W. P., & Diniz, C. G. (2019). Differential change in hippocampal radial astrocytes and neurogenesis in shorebirds with contrasting migratory routes. Frontiers in Neuroanatomy, 13, 82. https://doi.org/10.3389/fnana.2019.00082

    Article  PubMed  PubMed Central  Google Scholar 

  26. Murueta-Goyena, A., Ortuzar, N., Gargiulo, P. Á., Lafuente, J. V., & Bengoetxea, H. (2018). Short-term exposure to enriched environment in adult rats restores MK-801-induced cognitive deficits and GABAergic interneuron immunoreactivity loss. Molecular Neurobiology, 55(1), 26–41. https://doi.org/10.1007/s12035-017-0715-z

    Article  PubMed  Google Scholar 

  27. Placencia, E. V. D., Serra, F. T., Henrique, J. S., Arida, R. M., da Silva, S. G. (2019). Hippocampal distribution of parvalbumin neurons in female and male rats submitted to the same volume and intensity of aerobic exercise. Neuroscience Letters, 690, 162–166. https://doi.org/10.1016/j.neulet.2018.10.028

    Article  PubMed  Google Scholar 

  28. Reed, J., Oring, L., & Gray, E. (2013) Spotted sandpiper (Actitis macularius), Version 2.0. In A. Poole (Ed.), The birds of North America. Cornell Lab of Ornithology.

  29. Roth, T. C., & Pravosudov, V. V. (2009). Hippocampal volumes and neuron numbers increase along a gradient of environmental harshness: A large-scale comparison. Philosophical Transactions of the Royal Society B: Biological Sciences, 276(1656), 401–405. https://doi.org/10.1098/rspb.2008.1184

    Article  Google Scholar 

  30. Rytova, V., Ganella, D. E., Hawkes, D., Bathgate, R. A. D., Ma, S., Gundlach, A. L. (2019). Chronic activation of the relaxin-3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance. Hippocampus, 29(10), 905–920. https://doi.org/10.1002/hipo.23089

    Article  PubMed  Google Scholar 

  31. Serrano, I. (2010). Distribuição E Conservação De Aves Migratórias Neárticas Da Ordem Charadriiformes (Famílias Charadriidae E Scolopacidae) No Brasil, 174 (Doutorado). Department Of Zoology, Universidade Federal Do Pará Museu Paraense Emílio Goeldi Programa De Pós-Graduação Em Zoologia Curso De Doutorado Em Zoologia, Belém (PA) - Brazil. 10.13140/2.1.2775.8404

  32. Shu, S., Ju, G., & Fan, L. (1988). The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neuroscience Letters, 85(2), 169–171. https://doi.org/10.1016/0304-3940(88)90346-1

    Article  PubMed  Google Scholar 

  33. Slomianka, L., & West, M. J. (2005). Estimators of the precision of stereological estimates: An example based on the CA1 pyramidal cell layer of rats. Neuroscience, 136(3), 757–767. https://doi.org/10.1016/j.neuroscience.2005.06.086

    Article  PubMed  Google Scholar 

  34. Wada, K., Sakaguchi, H., Jarvis, E. D., & Hagiwaraet, M. (2004). Differential expression of glutamate receptors in avian neural pathways for learned vocalization. Journal of Comparative Neurology, 476(1), 44–64. https://doi.org/10.1002/cne.20201

    Article  Google Scholar 

  35. West, M. J. (2002). Design-based stereological methods for counting neurons. Progress in Brain Research, 135, 43–51. https://doi.org/10.1016/S0079-6123(02)35006-4

    Article  PubMed  Google Scholar 

  36. West, M. J., Slomianka, L., & Gundersen, H. J. (1991). Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. The Anatomical Record, 231(4), 482–497. https://doi.org/10.1002/ar.1092310411

    Article  PubMed  Google Scholar 

  37. Zengin-Toktas, Y., & Woolley, S. C. (2017). Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry. PLOS ONE, 12(2), Article e0172944. https://doi.org/10.1371/journal.pone.0172944

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the institutions Universidade Federal do Pará, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção e Instituto Federal de Educação, Ciência e Tecnologia do Pará, and Laboratório de Biologia Molecular e Neuroecologia for the collaboration to comply with this work.

Funding

This research was supported by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES); Programa Ciências do Mar II; The Canadian Bureau for International Education (CBIE); the Brazilian Research Council (CNPq) Edital Universal Grant number 440722/2014-4; Fundação Amazônia Paraense de Amparo à Pesquisa (FAPESPA); Programa de Apoio a Núcleos Emergentes and Financiadora de Estudos e Projetos (FINEP); Instituto Brasileiro de Neurociências (IBNnet); and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Affiliations

Author notes

  1. Ediely Pereira Henrique is deceased. This paper is dedicated to his/her memory.

    • Ediely Pereira Henrique
Authors

Contributions

All listed authors contributed substantially to the conception or design of the work; the acquisition, analysis, or interpretation of data for the work; drafting the work or revising it critically for important intellectual content; and/or final approval of the version to be published; and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Cristovam Wanderley Picanço Diniz.

Ethics declarations

Ethics approval

Approved by the ethics committee of UFPA/CEUA, number 1,840,281,116.

Consent to participate

Not applicable.

Consent for publication

The authors agree with this publication.

Conflict of interest

The authors declare that they have no conflicts of interest. No financial conflict of interest was identified, and the terms of the funding arrangement were reviewed and approved by the Federal University of Pará in accordance with its policy on objectivity in research.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guerreiro, L.C.F., Henrique, E.P., da Silva Rosa, J.B. et al. Plasticity in the hippocampal formation of shorebirds during the wintering period: Stereological analysis of parvalbumin neurons in Actitis macularius. Learn Behav (2021). https://doi.org/10.3758/s13420-021-00473-6

Download citation

Keywords

  • Actitis macularius
  • Migration
  • Wintering period
  • Parvalbumin
  • Hippocampal formation
  • Magnocellular nucleus of isthmus