Rainbow trout discriminate 2-D photographs of conspecifics from distracting stimuli using an innovative operant conditioning device

Abstract

Cognitive abilities were studied in rainbow trout, the first continental fish production in Europe. Increasing public concern for the welfare of farmed-fish species highlighted the need for better knowledge of the cognitive status of fish. We trained and tested 15 rainbow trout with an operant conditioning device composed of self-feeders positioned in front of visual stimuli displayed on a screen. The device was coupled with a two-alternative forced-choice (2-AFC) paradigm to test whether rainbow trout can discriminate 2-D photographs of conspecifics (S+) from different visual stimuli (S-). The S- were applied in four stages, the last three stages representing increasing discrimination difficulty: (1) blue shapes; (2) black shape (star); (3) photograph of an object (among a pool of 60); (4) photograph of another fish species (among a pool of 60). Nine fish (out of 15) correctly managed to activate the conditioning device after 30–150 trials. The rainbow trout were able to discriminate images of conspecifics from an abstract shape (five individuals out of five) or objects (four out of five) but not from other fish species. Their ability to learn the category "fish shape" rather than distinguishing between conspecifics and heterospecifics is discussed. The successful visual discrimination task using this complex operant conditioning device is particularly remarkable and novel for this farmed-fish species, and could be exploited to develop cognitive enrichments in future farming systems. This device can also be added to the existing repertoire of testing devices suitable for investigating cognitive abilities in fish.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Agrillo, C., Piffer, L., & Bisazza, A. (2010). Large number discrimination by mosquitofish. PLoS One, 5(12), e15232. https://doi.org/10.1371/journal.pone.0015232.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Agrillo, C., & Bisazza, A. (2014). Spontaneous versus trained numerical abilities. A comparison between the two main tools to study numerical competence in non-human animals. Journal of Neuroscience Methods, 234, 82–91. https://doi.org/10.1016/j.jneumeth.2014.04.027.

    Article  PubMed  Google Scholar 

  3. Alanara, A., & Brannas, E. (1996). Dominance in demand-feeding behaviour in arctic charr and rainbow trout: the effect of stocking density. Journal of Fish Biology, 48(2), 242–254. https://doi.org/10.1111/j.1095-8649.1996.tb01116.x.

    Article  Google Scholar 

  4. Ben-Simon, A., Ben-Shahar, O., Vasserman, G., Ben-Tov, M., & Segev, R. (2012). Visual acuity in the archerfish: behavior, anatomy, and neurophysiology. Journal of Vision, 12(12), 18. https://doi.org/10.1167/12.12.18.

    Article  PubMed  Google Scholar 

  5. Bloch, S., Froc, C., Pontiggia, A., & Yamamoto, K. (2019). Existence of working memory in teleosts: establishment of the delayed matching-to-sample task in adult zebrafish. Behavioural Brain Research, 370, 111924. https://doi.org/10.1016/j.bbr.2019.111924.

    Article  PubMed  Google Scholar 

  6. Brock, A. J., Sudwarts, A., Daggett, J., Parker, M. O., & Brennan, C. H. (2017). A fully automated computer-based ‘Skinner Box’ for testing learning and memory in zebrafish. BioRxiv, 110478. https://doi.org/10.1101/110478.

  7. Broglio, C., Rodriguez, F., & Salas, C. (2003). Spatial cognition and its neural basis in teleost fishes. Fish and Fisheries, 4(3), 247–255. https://doi.org/10.1046/j.1467-2979.2003.00128.x.

    Article  Google Scholar 

  8. Brown, G. E., & Smith, R. J. F. (1997). conspecific skin extracts elicit antipredator responses in juvenile rainbow trout (oncorhynchus mykiss). Canadian Journal of Zoology-Revue Canadienne De Zoologie, 75(11), 1916–1922. https://doi.org/10.1139/z97-821.

    Article  Google Scholar 

  9. Bshary, R., & Grutter, A. S. (2006). Image scoring and cooperation in a cleaner fish mutualism. Nature, 441(7096), 975–978. https://doi.org/10.1038/nature04755.

    Article  PubMed  Google Scholar 

  10. Bshary, R., Wickler, W., & Fricke, H. (2002). Fish cognition: a primate's eye view. Animal Cognition, 5(1), 1–13. https://doi.org/10.1007/s10071-001-0116-5.

    Article  PubMed  Google Scholar 

  11. Cañon Jones, H. A., Noble, C., Damsgård, B., & Pearce, G. P. (2012). Investigating the influence of predictable and unpredictable feed delivery schedules upon the behaviour and welfare of Atlantic salmon parr (Salmo salar) using social network analysis and fin damage. Applied Animal Behaviour Science, 138(1–2), 132–140. https://doi.org/10.1016/j.applanim.2012.01.019.

  12. Catania, A. C. (1975). Pigeons preference for free choice over forced choice as a function of number of free-choice alternatives. Bulletin of the Psychonomic Society, 6(4), 424–424.

    Google Scholar 

  13. Champ, C., Wallis, G., Vorobyev, M., Siebeck, U., & Marshall, J. (2014). Visual acuity in a species of coral reef fish: rhinecanthus aculeatus. Brain Behavior and Evolution, 83(1), 31–42. https://doi.org/10.1159/000356977.

    Article  Google Scholar 

  14. Champagne, D. L., Hoefnagels, C. C. M., de Kloet, R. E., & Richardson, M. K. (2010). Translating rodent behavioral repertoire to zebrafish (danio rerio): relevance for stress research. Behavioural Brain Research, 214(2), 332-342. https://doi.org/10.1016/j.bbr.2010.06.001.

  15. Clark, D. L., & Stephenson, K. R. (1999). Response to video and computer-animated images by the tiger barb, puntius tetrazona. Environmental Biology of Fishes, 56(3), 317–324. https://doi.org/10.1023/A:1007549721631.

    Article  Google Scholar 

  16. Colson, V., Cousture, M., Damasceno, D., Valotaire, C., Nguyen, T., Le Cam, A., & Bobe, J. (2019). Maternal temperature exposure impairs emotional and cognitive responses and triggers dysregulation of neurodevelopment genes in fish. PeerJ, 7, e6338. https://doi.org/10.7717/peerj.6338.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Colson, V., Sadoul, B., Valotaire, C., Prunet, P., Gaumé, M., & Labbé, L. (2015). Welfare assessment of rainbow trout reared in a recirculating aquaculture system: comparison with a flow-through system. Aquaculture, 436(0), 151–159. https://doi.org/10.1016/j.aquaculture.2014.10.047.

    Article  Google Scholar 

  18. Culumber, Z. W. (2015). Early recognition and response to predator, heterospecific, and conspecific visual cues by multiple species of poeciliid fry. Behaviour, 152(11), 1463–1479. https://doi.org/10.1163/1568539x-00003287.

    Article  Google Scholar 

  19. DeLong, C. M., Barbato, S., O’Leary, T., & Wilcox, K. T. (2017). Small and large number discrimination in goldfish (Carassius auratus) with extensive training. Behavioural Processes, 141, 172–183. https://doi.org/10.1016/j.beproc.2016.11.011.

    Article  PubMed  Google Scholar 

  20. FEAP (2017). FEAP Annual Report 2017. https://issuu.com/feapsec/docs/feap_ar2017.

  21. Fuss, T., Bleckmann, H., & Schluessel, V. (2014). Visual discrimination abilities in the gray bamboo shark (chiloscyllium griseum). Zoology (Jena), 117(2), 104–111. https://doi.org/10.1016/j.zool.2013.10.009.

    Article  Google Scholar 

  22. Franks, B. (2018). Cognition as a cause, consequence, and component of welfare. In Advances in agricultural animal welfare: science and practice (p. 22). https://doi.org/10.1016/B978-0-08-101215-4.00001-8.

    Google Scholar 

  23. Gabor, V., & Gerken, M. (2012). Cognitive testing in horses using a computer based apparatus. Applied Animal Behaviour Science, 139(3-4), 242–250. https://doi.org/10.1016/j.applanim.2012.04.010.

    Article  Google Scholar 

  24. Gaikwad, S., Stewart, A., Hart, P., Wong, K., Piet, V., Cachat, J., & Kalueff, A. V. (2011). Acute stress disrupts performance of zebrafish in the cued and spatial memory tests: the utility of fish models to study stress-memory interplay. Behavioural Processes, 87(2), 224–230. https://doi.org/10.1016/j.beproc.2011.04.004.

    Article  PubMed  Google Scholar 

  25. Gerullis, P., & Schuster, S. (2014). Archerfish actively control the hydrodynamics of their jets. Current Biology, 24(18), 2156–2160. https://doi.org/10.1016/j.cub.2014.07.059.

    Article  PubMed  Google Scholar 

  26. Gierszewski, S., Bleckmann, H., & Schluessel, V. (2013). Cognitive abilities in malawi cichlids (Pseudotropheus sp.): matching-to-sample and image/mirror-image discriminations. PLoS One, 8(2), e57363. https://doi.org/10.1371/journal.pone.0057363.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Goldman, M., & Shapiro, S. (1979). Matching-to-sample and oddity-from-sample in goldfish. Journal of the Experimental Analysis of Behavior, 31(2), 259–266. https://doi.org/10.1901/jeab.1979.31-259.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gómez-Laplaza, L. M., Díaz-Sotelo, E., & Gerlai, R. (2018). Quantity discrimination in angelfish, Pterophyllum scalare: A novel approach with food as the discriminant. Animal Behaviour, 142, 19–30. https://doi.org/10.1016/j.anbehav.2018.06.001.

    Article  Google Scholar 

  29. Gómez-Laplaza, L. M., & Gerlai, R. (2013). The role of body surface area in quantity discrimination in angelfish (pterophyllum scalare). PLoS One, 8(12), e83880. https://doi.org/10.1371/journal.pone.0083880.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goncalves, D. M., Oliveira, R. F., Korner, K., Poschadel, J. R., & Schlupp, I. (2000). Using video playbacks to study visual communication in a marine fish, salaria pavo. Animal Behaviour, 60, 351–357. https://doi.org/10.1006/anbe.2000.1459.

    Article  PubMed  Google Scholar 

  31. Griffiths, S. W., & Magurran, A. E. (1999). Schooling decisions in gunnies (poecilia reticulata) are based on familiarity rather than kin recognition by phenotype matching. Behavioral Ecology and Sociobiology, 45(6), 437–443. https://doi.org/10.1007/s002650050582.

    Article  Google Scholar 

  32. Grosenick, L., Clement, T. S., & Fernald, R. D. (2007). Fish can infer social rank by observation alone. Nature, 445(7126), 429–432. https://doi.org/10.1038/nature05511.

    Article  PubMed  Google Scholar 

  33. Herman, L. M., Gory, J. D., Hovancik, J. R., & Bradshaw, G. L. (1989). Generalization of visual matching by a bottlenosed dolphin (tursiops-truncatus) - evidence for invariance of cognitive performance with visual and auditory materials. Journal of Experimental Psychology-Animal Behavior Processes, 15(2), 124–136. https://doi.org/10.1037/0097-7403.15.2.124.

    Article  Google Scholar 

  34. Hester, F. J. (1968). Visual contrast thresholds of the goldfish (Carassius auratus). Vision Research, 8(10), 1315–1336.

    Article  Google Scholar 

  35. Höjesjö, J., Axelsson, M., Dahy, R., Gustavsson, L., & Johnsson, J. I. (2015). Sight or smell? Behavioural and heart rate responses in subordinate rainbow trout exposed to cues from dominant fish. PeerJ, 3. https://doi.org/10.7717/peerj.1169.

  36. Holmes, T. H., & McCormick, M. I. (2010). Smell, learn and live: the role of chemical alarm cues in predator learning during early life history in a marine fish. Behavioural Processes, 83(3), 299–305. https://doi.org/10.1016/j.beproc.2010.01.013.

    Article  PubMed  Google Scholar 

  37. Horner, A. E., Heath, C. J., Hvoslef-Eide, M., Kent, B. A., Kim, C. H., Nilsson, S. R. O., et al. (2013). The touchscreen operant platform for testing learning and memory in rats and mice. Nature Protocols, 8(10), 1961–1984. https://doi.org/10.1038/nprot.2013.122.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ingraham, E., Anderson, N. D., Hurd, P. L., & Hamilton, T. J. (2016). Twelve-day reinforcement-based memory retention in african cichlids (labidochromis caeruleus). Frontiers in Behavioral Neuroscience, 10, 157. https://doi.org/10.3389/fnbeh.2016.00157.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ioannou, C. C., Couzin, I. D., James, R., Croft, D. P., & Krause, J. (2011). Social organization and information transfer in schooling fish. In C. Brown, K. Laland, & J. Krause (Eds.), Fish cognition and behaviour (2nd ed.). Oxford: Wiley-Blackwell. https://doi.org/10.1002/9781444342536.ch10.

    Google Scholar 

  40. Johnsson, J. I. (1997). Individual recognition affects aggression and dominance relations in rainbow trout, oncorhynchus mykiss. Ethology, 103(4), 267–282. https://doi.org/10.1111/j.1439-0310.1997.tb00017.x.

    Article  Google Scholar 

  41. Johnsson, J. I., & Åkerman, A. (1998). Watch and learn : Preview of the fighting ability of opponents alters contest behaviour in rainbow trout. Animal Behaviour, 56(3), 771–776. https://doi.org/10.1006/anbe.1998.0824.

    Article  PubMed  Google Scholar 

  42. Johnston, N. K., & Dixson, D. L. (2017). Anemonefishes rely on visual and chemical cues to correctly identify conspecifics. Coral Reefs, 36, 903–912. https://doi.org/10.1007/s00338-017-1582-9.

    Article  Google Scholar 

  43. Jurado-Parras, M. T., Sanchez-Campusano, R., Castellanos, N. P., Pdel- Pozo, F., Gruart, A., & Delgado-Garcia, J. M. (2013). Differential contribution of hippocampal circuits to appetitive and consummatory behaviors during operant conditioning of behaving mice. Journal of Neuroscience, 33(6), 2293–2304. https://doi.org/10.1523/JNEUROSCI.1013-12.2013.

    Article  PubMed  Google Scholar 

  44. Knight, M. E., & Turner, G. F. (1999). Reproductive isolation among closely related Lake Malawi cichlids : Can males recognize conspecific females by visual cues? Animal Behaviour, 58(4), 761–768. https://doi.org/10.1006/anbe.1999.1206.

    Article  PubMed  Google Scholar 

  45. Knolle, F., Goncalves, R. P., & Morton, A. J. (2017). Sheep recognize familiar and unfamiliar human faces from two-dimensional images. Royal Society Open Science, 4(11), 171228. https://doi.org/10.1098/rsos.171228.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kotrschal, A., & Taborsky, B. (2010). Environmental change enhances cognitive abilities in fish. PLoS Biology, 8(4), e1000351. https://doi.org/10.1371/journal.pbio.1000351.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kuroda, T., Mizutani, Y., Cancado, C. R. X., & Podlesnik, C. A. (2017). Reversal learning and resurgence of operant behavior in zebrafish (danio rerio). Behavioural Processes, 142, 79–83. https://doi.org/10.1016/j.beproc.2017.06.004.

    Article  PubMed  Google Scholar 

  48. Langbein, J., Nurnberg, G., & Manteuffel, G. (2004). Visual discrimination learning in dwarf goats and associated changes in heart rate and heart rate variability. Physiology & Behavior, 82(4), 601–609. https://doi.org/10.1016/j.physbeh.2004.05.007.

    Article  Google Scholar 

  49. Luchiari, A. C., & Pirhonen, J. (2008). Effects of ambient colour on colour preference and growth of juvenile rainbow trout oncorhynchus mykiss (walbaum). Journal of Fish Biology, 72(6), 1504–1514. https://doi.org/10.1111/j.1095-8649.2008.01824.x.

    Article  Google Scholar 

  50. Lucon-Xiccato, T., & Bisazza, A. (2014). Discrimination reversal learning reveals greater female behavioural flexibility in guppies. Biology Letters, 10(6), 20140206. https://doi.org/10.1098/rsbl.2014.0206.

    Article  PubMed Central  Google Scholar 

  51. Maia, C. M., Ferguson, B., Volpato, G. L., & Braithwaite, V. A. (2017). Physical and psychological motivation tests of individual preferences in rainbow trout. Journal of Zoology, 302(2), 108–118. https://doi.org/10.1111/jzo.12438.

    Article  Google Scholar 

  52. Manteuffel, G., Langbein, J., & Puppe, B. (2009). From operant learning to cognitive enrichment in farm animal housing: bases and applicability. Animal Welfare, 18(1), 87–95.

    Google Scholar 

  53. Martins, C. I. M., Galhardo, L., Noble, C., Damsgard, B., Spedicato, M. T., Zupa, W., Beauchaud, M., Kulczykowska, E., Massabuau, J. C., Carter, T., Planellas, S. R., & Kristiansen, T. (2012). Behavioural indicators of welfare in farmed fish. Fish Physiology and Biochemistry, 38(1), 17–41. https://doi.org/10.1007/s10695-011-9518-8.

    Article  PubMed  Google Scholar 

  54. Meehan, C. L., & Mench, J. A. (2007). The challenge of challenge: Can problem solving opportunities enhance animal welfare? Applied Animal Behaviour Science, 102(3-4), 246–261. https://doi.org/10.1016/j.applanim.2006.05.031.

    Article  Google Scholar 

  55. Mueller, K., & Neuhauss, S. (2012). Automated visual choice discrimination learning in zebrafish (Danio rerio). Journal of Integrative Neuroscience, 11, 73–85. https://doi.org/10.1142/S0219635212500057.

    Article  PubMed  Google Scholar 

  56. Näslund, J., & Johnsson, J. I. (2016). Environmental enrichment for fish in captive environments: effects of physical structures and substrates. Fish and Fisheries, 17(1), 1–30. https://doi.org/10.1111/faf.12088.

    Article  Google Scholar 

  57. Neumeyer, C. (2003). Wavelength dependence of visual acuity in goldfish. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 189(11), 811–821. https://doi.org/10.1007/s00359-003-0457-4.

    Article  Google Scholar 

  58. Newport, C., Wallis, G., & Siebeck, U. E. (2015). Same/different abstract concept learning by archerfish (toxotes chatareus). PLoS One, 10(11), e0143401. https://doi.org/10.1371/journal.pone.0143401.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Newport, C., Wallis, G., Temple, S. E., & Siebeck, U. E. (2013). Complex, context-dependent decision strategies of archerfish, toxotes chatareus. Animal Behaviour, 86(6), 1265–1274. https://doi.org/10.1016/j.anbehav.2013.09.031.

    Article  Google Scholar 

  60. Oesterwind, S., Nürnberg, G., Puppe, B., & Langbein, J. (2016). Impact of structural and cognitive enrichment on the learning performance, behavior and physiology of dwarf goats (Capra aegagrus hircus). Applied Animal Behaviour Science, 177, 34–41. https://doi.org/10.1016/j.applanim.2016.01.006.

    Article  Google Scholar 

  61. Oliveira, J., Silveira, M., Chacon, D., & Luchiari, A. (2015). The zebrafish world of colors and shapes: preference and discrimination. Zebrafish, 12(2), 166–173. https://doi.org/10.1089/zeb.2014.1019.

    Article  PubMed  Google Scholar 

  62. Overli, O., Sorensen, C., Pulman, K. G., Pottinger, T. G., Korzan, W., Summers, C. H., & Nilsson, G. E. (2007). Evolutionary background for stress-coping styles: relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neuroscience & Biobehavioral Reviews, 31(3), 396–412. https://doi.org/10.1016/j.neubiorev.2006.10.006.

    Article  Google Scholar 

  63. Parker, M. O., Gaviria, J., Haigh, A., Millington, M. E., Brown, V. J., Combe, F. J., & Brennan, C. H. (2012). Discrimination reversal and attentional sets in zebrafish (danio rerio). Behavioural Brain Research, 232(1), 264–268. https://doi.org/10.1016/j.bbr.2012.04.035.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Paśko, Ł. (2010). Tool-like behavior in the sixbar wrasse, Thalassoma hardwicke (Bennett, 1830). Zoo Biology, 29(6), 767–773. https://doi.org/10.1002/zoo.20307.

    Article  PubMed  Google Scholar 

  65. Rodriguez, F., Duran, E., Vargas, J. P., Torres, B., & Salas, C. (1994). Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Animal Learning & Behavior, 22(4), 409–420. https://doi.org/10.3758/bf03209160.

    Article  Google Scholar 

  66. Roux, N., Duran, E., Lanyon, R. G., Frederich, B., Berthe, C., Besson, M., Dixson, D. L., & Lecchini, D. (2016). Brain lateralization involved in visual recognition of conspecifics in coral reef fish at recruitment. Animal Behaviour, 117, 3–8. https://doi.org/10.1016/j.anbehav.2016.04.011.

    Article  Google Scholar 

  67. Roy, T., Suriyampola, P. S., Flores, J., López, M., Hickey, C., Bhat, A., & Martins, E. P. (2019). Color preferences affect learning in zebrafish, Danio rerio. Scientific Reports, 9, 14531. https://doi.org/10.1038/s41598-019-51145-5.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Santacà, M., Busatta, M., Lucon-Xiccato, T., & Bisazza, A. (2019). Sensory differences mediate species variation in detour task performance. Animal Behaviour, 155, 153–162. https://doi.org/10.1016/j.anbehav.2019.05.022.

    Article  Google Scholar 

  69. Satoh, S., Tanaka, H., & Kohda, M. (2016). Facial recognition in a discus fish (cichlidae): experimental approach using digital models. PLoS One, 11(5). https://doi.org/10.1371/journal.pone.0154543.

  70. Salvanes, A. G., Moberg, O., Ebbesson, L. O., Nilsen, T. O., Jensen, K. H., & Braithwaite, V. A. (2013). Environmental enrichment promotes neural plasticity and cognitive ability in fish. Proceedings Biological Sciences, 280(1767), 20131331. https://doi.org/10.1098/rspb.2013.1331.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schluessel, V., Fricke, G., & Bleckmann, H. (2012). Visual discrimination and object categorization in the cichlid Pseudotropheus sp. Animal Cognition, 15(4), 525–537. https://doi.org/10.1007/s10071-012-0480-3.

    Article  PubMed  Google Scholar 

  72. Seger, C. A., & Miller, E. K. (2010). Category learning in the brain. Annual Review of Neuroscience, 33, 203–219. https://doi.org/10.1146/annurev.neuro.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shettleworth, S. J. (2009). Cognition, evolution, and behavior. Oxford University Press.

  74. Sidman, M., Rauzin, R., Lazar, R., Cunningham, S., Tailby, W., & Carrigan, P. (1982). A Search for symmetry in the conditional discriminations of rhesus monkeys, baboons, and children. Journal of the Experimental Analysis of Behavior, 37(1), 23–44. https://doi.org/10.1901/jeab.1982.37-23.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Siebeck, U. E., Litherland, L., & Wallis, G. M. (2009). Shape learning and discrimination in reef fish. Journal of Experimental Biology, 212(13), 2113–2119. https://doi.org/10.1242/jeb.028936.

    Article  Google Scholar 

  76. Sovrano, V. A., & Bisazza, A. (2008). Recognition of partly occluded objects by fish. Animal Cognition, 11(1), 161–166. https://doi.org/10.1007/s10071-007-0100-9.

    Article  PubMed  Google Scholar 

  77. Speedie, N., & Gerlai, R. (2008). Alarm substance induced behavioral responses in zebrafish (danio rerio). Behavioural Brain Research, 188(1), 168–177. https://doi.org/10.1016/j.bbr.2007.10.031.

    Article  PubMed  Google Scholar 

  78. Strand, D. A., Utne-Palm, A. C., Jakobsen, P. J., Braithwaite, V. A., Jensen, K. H., & Salvanes, A. G. V. (2010). Enrichment promotes learning in fish. Marine Ecology Progress Series, 412, 273–282. https://doi.org/10.3354/meps08682.

    Article  Google Scholar 

  79. Vavrek, M. A., & Brown, G. E. (2009). Threat-sensitive responses to disturbance cues in juvenile convict cichlids and rainbow trout. Annales Zoologici Fennici, 46(3), 171–180. https://doi.org/10.5735/086.046.0302.

    Article  Google Scholar 

  80. von der Emde, G., & Fetz, S. (2007). Distance, shape and more: recognition of object features during active electrolocation in a weakly electric fish. Journal of Experimental Biology, 210(17), 3082-3095. https://doi.org/10.1242/jeb.005694.

  81. Vonk, J. (2003). Gorilla (gorilla gorilla gorilla) and orangutan (pongo abelii) understanding of first- and second-order relations. Animal Cognition, 6(2), 77–86. https://doi.org/10.1007/s10071-003-0159-x.

    Article  PubMed  Google Scholar 

  82. Wyzisk, K., & Neumeyer, C. (2007). Perception of illusory surfaces and contours in goldfish. Visual Neuroscience, 24, 291–298. https://doi.org/10.1017/S095252380707023X.

    Article  PubMed  Google Scholar 

  83. Zerbolio, D. J., & Royalty, J. L. (1983). Matching and oddity conditional discrimination in the goldfish as avoidance responses: evidence for conceptual avoidance learning. Animal Learning & Behavior, 11(3), 341–348. https://doi.org/10.3758/bf03199786.

    Article  Google Scholar 

Download references

Acknowledgements

This experiment was made possible through funding provided by the Department PHASE (Animal Physiology and Breeding Systems) of INRAE.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Violaine Colson.

Additional information

Open Practices Statements

The data and materials for all experiments will be available on publication.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kleiber, A., Valotaire, C., Patinote, A. et al. Rainbow trout discriminate 2-D photographs of conspecifics from distracting stimuli using an innovative operant conditioning device. Learn Behav (2021). https://doi.org/10.3758/s13420-020-00453-2

Download citation

Keywords

  • Operant conditioning
  • Alternative forced-choice test
  • Rainbow trout
  • Conspecific recognition
  • Object recognition
  • Categorization