Skip to main content
Log in

Age-related impairment in fear memory extinction is restored by ketamine in middle-aged mice

  • Research Article
  • Published:
Cognitive, Affective, & Behavioral Neuroscience Aims and scope Submit manuscript

Abstract

Posttraumatic stress disorder (PTSD), a disabling and chronic condition after exposure to an extreme traumatic event, affects approximately 8% of the population worldwide. However, the underlying mechanisms of PTSD are not clear. The ability to manage fear memories is critical for PTSD. Differences in stress responsiveness and coping strategies by age represent an important starting point for the understanding and prevention of PTSD. However, we do not know whether the ability to cope with fear memories is decreased in middle-aged mice. To investigate this, we compared fear memory extinction among different age groups of mice. We found that middle-aged mice exhibited impaired fear memory extinction, which was accompanied by sustained enhanced long-term potentiation (LTP) induction in the extinction process. Most interestingly, ketamine treatment restored the impaired fear memory extinction in middle-aged mice. Moreover, ketamine could ameliorate the increased LTP during the extinction process through a presynaptic mechanism. Altogether, our results indicated that middle-aged mice were unable to extinguish fear memories, which could be treated with ketamine via presynaptic-mediated synaptic plasticity in middle-aged mice, suggesting that ketamine administration may be a new strategy for the treatment of PTSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Autry, A. E., Adachi, M., Nosyreva, E., Na, E. S., Los, M. F., Cheng, P. F., …, Monteggia, L. M. (2011). NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 475, 91-95.

  • Barnes, V. A. (2018). Transcendental Meditation and treatment for post-traumatic stress disorder. The Lancet Psychiatry, 5, 946–947.

    Article  PubMed  Google Scholar 

  • Berman, R. M., Cappiello, A., Anand, A., Oren, D. A., Heninger, G. R., Charney, D. S., & Krystal, J. H. (2000). Antidepressant effects of ketamine in depressed patients. Biological Psychiatry, 47, 351–354.

    Article  PubMed  Google Scholar 

  • Blanchard-Fields, F., Stein, R., & Watson, T. L. (2004). Age differences in emotion-regulation strategies in handling everyday problems. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 59, P261–P269.

    Article  PubMed  Google Scholar 

  • Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361, 31–39.

    Article  PubMed  Google Scholar 

  • Bolton, M. M., Heaney, C. F., Sabbagh, J. J., Murtishaw, A. S., Magcalas, C. M., & Kinney, J. W. (2012). Deficits in emotional learning and memory in an animal model of schizophrenia. Behavioural Brain Research, 233, 35–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, Y., Lan, Y., Zhang, S., Li, W., Luo, Z., Lin, S., …, Gao, T. (2017). ErbB4 signaling in the prelimbic cortex regulates fear expression. Translational Psychiatry, 7, e1168.

  • Feder, A., Parides, M. K., Murrough, J. W., Perez, A. M., Morgan, J. E., Saxena, S., …, Charney, D. S. (2014). Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: A randomized clinical trial. Jama Psychiatry, 71, 681-688.

  • Folkman, S. (1997). Positive psychological states and coping with severe stress. Social Science and Medicine, 45, 1207–1221.

    Article  PubMed  Google Scholar 

  • Gideons, E. S., Kavalali, E. T., & Monteggia, L. M. (2014). Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proceedings of the National Academy of Sciences of the United States of America, 111, 8649–8654.

    Article  PubMed  PubMed Central  Google Scholar 

  • Girgenti, M. J., Ghosal, S., LoPresto, D., Taylor, J. R., & Duman, R. S. (2017). Ketamine accelerates fear extinction via mTORC1 signaling. Neurobiology of Diseases, 100, 1–8.

    Article  Google Scholar 

  • Groeber, T. C., Altman, D. E., & Genovese, R. F. (2015). Ketamine administration diminishes operant responding but does not impair conditioned fear. Pharmacology, Biochemistry and Behavior, 139, 84–91.

    Article  Google Scholar 

  • Gutman, D. A., & Nemeroff, C. B. (2003). Persistent central nervous system effects of an adverse early environment: Clinical and preclinical studies. Physiology & Behavior, 79, 471–478.

    Article  Google Scholar 

  • Hartley, C. A., & Phelps, E. A. (2010). Changing fear: The neurocircuitry of emotion regulation. Neuropsychopharmacology, 35, 136–146.

    Article  PubMed  Google Scholar 

  • Holmes, A., & Singewald, N. (2013). Individual differences in recovery from traumatic fear. Trends in Neurosciences, 36, 23–31.

    Article  PubMed  Google Scholar 

  • Jeffreys, M., Capehart, B., & Friedman, M. J. (2012). Pharmacotherapy for posttraumatic stress disorder: Review with clinical applications. Journal of Rehabilitation Research and Development, 49, 703–715.

    Article  PubMed  Google Scholar 

  • Ji-Hong, L., Qian, W., Qiang-Long, Y., Ze-Lin, L., Neng-Yuan, H., Yan, …, Tian-Ming, G. (2020). Acute EPA-induced learning and memory impairment in mice is prevented by DHA. Nature Communications, 11, 5465.

  • Koolhaas, J. M., Korte, S. M., De Boer, S. F., Van Der Vegt, B. J., Van Reenen, C. G., Hopster, H., De Jong I.C., …, Blokhuis, H. J. (1999). Coping styles in animals: Current status in behavior and stress-physiology. Neuroscience and Biobehavioral Reviews, 23, 925-935.

  • Leahy, F., Ridout, N., Mushtaq, F., & Holland, C. (2018). Improving specific autobiographical memory in older adults: Impacts on mood, social problem solving, and functional limitations. Neuropsychology, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 25, 695–723.

    Article  PubMed  Google Scholar 

  • Levy, B. J., & Anderson, M. C. (2008). Individual differences in the suppression of unwanted memories: The executive deficit hypothesis. Acta Pathologica, Microbiologica, Et Immunologica Scandinavica, 127, 623–635.

    Google Scholar 

  • Li, N., Lee, B., Liu, R. J., Banasr, M., Dwyer, J. M., Iwata, M., …, Duman, R. S. (2010). MTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science, 329, 959-964.

  • Liu, J. H., Li, Z. L., Liu, Y. S., Chu, H. D., Hu, N. Y., Wu, D. Y., …, Gao, T. M. (2020). Astrocytic GABAB receptors in mouse hippocampus control responses to behavioral challenges through astrocytic BDNF. Neuroscience Bulletin, 36, 705-718.

  • Liu, J., You, Q., Wei, M., Wang, Q., Luo, Z., Lin, S., …, Gao, T. (2015). Social isolation during adolescence strengthens retention of fear memories and facilitates induction of Late-Phase Long-Term potentiation. Molecular Neurobiology, 52, 1421-1429.

  • Liu, J. H., Zhang, M., Wang, Q., Wu, D. Y., Jie, W., Hu, N. Y., …, T. M. (2022). Distinct roles of astroglia and neurons in synaptic plasticity and memory. Molecular Psychiatry, 27, 873-885.

  • Lu, K., Jing, X., Xue, Q., Song, X., Wei, M., & Wang, A. (2019). Impaired fear memory extinction during adolescence is accompanied by the depressive-like behaviors. Neuroscience Letters, 699, 8–15.

    Article  PubMed  Google Scholar 

  • Malenka, R. C., & Nicoll, R. A. (1999). Long-term potentiation–a decade of progress? Science, 285, 1870–1874.

    Article  PubMed  Google Scholar 

  • Maren, S. (2001). Neurobiology of Pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897–931.

    Article  PubMed  Google Scholar 

  • McCormick, C. M., Mathews, I. Z., Thomas, C., & Waters, P. (2010). Investigations of HPA function and the enduring consequences of stressors in adolescence in animal models. Brain and Cognition, 72, 73–85.

    Article  PubMed  Google Scholar 

  • Milad, M. R., Wright, C. I., Orr, S. P., Pitman, R. K., Quirk, G. J., & Rauch, S. L. (2007). Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biological Psychiatry, 62, 446–454.

    Article  PubMed  Google Scholar 

  • Moda-Sava, R. N., Murdock, M. H., Parekh, P. K., Fetcho, R. N., Huang, B. S., Huynh, T. N., Witztum, J., Shaver, D. C., Rosenthal, D. L., Alway, E. J., Lopez, K., Meng, Y., Nellissen, L., Grosenick, L., Milner, T. A., Deisseroth, K., Bito, H., Kasai, H., & Liston, C. (2019). Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science, 364, 19–24.

    Article  Google Scholar 

  • Murrough, J. W., Iosifescu, D. V., Chang, L. C., Al, J. R., Green, C. E., Perez, A. M., …, Mathew, S. J. (2013). Antidepressant efficacy of ketamine in treatment-resistant major depression: A two-site randomized controlled trial. American Journal of Psychiatry, 170, 1134-1142.

  • Oh, H., Song, M., Kim, Y. K., Bae, J. R., Cha, S., Bae, J. Y., Kim, Y., You, M., Lee, Y., Shim, J., & Maeng, S. (2018). Age-Related decrease in stress responsiveness and proactive coping in male mice. Frontiers in Aging Neuroscience, 10, 27–35.

    Article  Google Scholar 

  • Parsons, R. G., & Ressler, K. J. (2013). Implications of memory modulation for post-traumatic stress and fear disorders. Nature Neuroscience, 16, 146–153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pietersen, C. Y., Bosker, F. J., Postema, F., Fokkema, D. S., Korf, J., & den Boer, J. A. (2006). Ketamine administration disturbs behavioural and distributed neural correlates of fear conditioning in the rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 30, 1209–1218.

    Article  PubMed  Google Scholar 

  • Pitman, R. K., Rasmusson, A. M., Koenen, K. C., Shin, L. M., Orr, S. P., Gilbertson, M. W., Milad, M. R., & Liberzon, I. (2012). Biological studies of post-traumatic stress disorder. Nature Reviews Neuroscience, 13, 769–787.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rauch, S. L., Shin, L. M., & Phelps, E. A. (2006). Neurocircuitry models of posttraumatic stress disorder and extinction: Human neuroimaging research–past, present, and future. Biological Psychiatry, 60, 376–382.

    Article  PubMed  Google Scholar 

  • Ravindran, L. N., & Stein, M. B. (2009). Pharmacotherapy of PTSD: Premises, principles, and priorities. Brain Research, 1293, 24–39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, B. W., & Mroczek, D. (2008). Personality trait change in adulthood. Current Directions in Psychological Science, 17, 31–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin, R. (2018). VA using telemedicine to provide therapy to rural veterans with PTSD. JAMA, 319, 1648.

    PubMed  Google Scholar 

  • Schulz, P. E., Cook, E. P., & Johnston, D. (1994). Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. Journal of Neuroscience, 14, 5325–5337.

    Article  PubMed  Google Scholar 

  • Schulz, P. E., Cook, E. P., & Johnston, D. (1995). Using paired-pulse facilitation to probe the mechanisms for long-term potentiation (LTP). Journal of Physiology - Paris, 89, 3–9.

    Article  PubMed  Google Scholar 

  • Slomski, A. (2018). Brief psychotherapy for PTSD. JAMA, 319, 1190.

    Article  PubMed  Google Scholar 

  • Song, C., Zhang, W. H., Wang, X. H., Zhang, J. Y., Tian, X. L., Yin, X. P., & Pan, B. X. (2017). Acute stress enhances the glutamatergic transmission onto basoamygdala neurons embedded in distinct microcircuits. Molecular Brain, 10, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spoont M: JAMA PATIENT PAGE. (2015). Posttraumatic stress disorder (PTSD). JAMA, 314, 532.

  • Spoont, M. R., Williams, J. J., Kehle-Forbes, S., Nieuwsma, J. A., Mann-Wrobel, M. C., & Gross, R. (2015). Does this patient have posttraumatic stress disorder? Rational Clinical Examination Systematic Review. JAMA, 314, 501–510.

    PubMed  Google Scholar 

  • Staten, R. T., & Delaney, K. R. (2010). IOM releases report on preventing mental, emotional, and behavioral disorders among young people: Progress and possibilities. Journal of Child and Adolescent Psychiatric Nursing, 23, 118.

    Article  PubMed  Google Scholar 

  • van der Kolk, B. A., & Fisler, R. (1995). Dissociation and the fragmentary nature of traumatic memories: Overview and exploratory study. Journal of Traumatic Stress, 8, 505–525.

    Article  PubMed  Google Scholar 

  • Wei, M. D., Wang, Y. H., Lu, K., Lv, B. J., Wang, Y., & Chen, W. Y. (2020). Ketamine reverses the impaired fear memory extinction and accompanied depressive-like behaviors in adolescent mice. Behavioural Brain Research, 379, 112342.

    Article  PubMed  Google Scholar 

  • Xiong, W., Wei, H., Xiang, X., Cao, J., Dong, Z., Wang, Y., Xu, T., & Xu, L. (2004). The effect of acute stress on LTP and LTD induction in the hippocampal CA1 region of anesthetized rats at three different ages. Brain Research, 1005, 187–192.

    Article  PubMed  Google Scholar 

  • Yang, Y., Cui, Y., Sang, K., Dong, Y., Ni, Z., Ma, S., & Hu, H. (2018). Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature, 554, 317–322.

    Article  PubMed  Google Scholar 

  • Yuen, E. Y., Liu, W., Karatsoreos, I. N., Feng, J., McEwen, B. S., & Yan, Z. (2009). Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. Proceedings of the National Academy of Sciences of the United States of America, 106, 14075–14079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zanos, P., Moaddel, R., Morris, P. J., Georgiou, P., Fischell, J., Elmer, G. I., …, Gould, T. D. (2016). NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature, 533, 481-486.

  • Zarate, C. J., Singh, J. B., Carlson, P. J., Brutsche, N. E., Ameli, R., Luckenbaugh, D. A., ..., Manji, H. K. (2006). A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Archives of General Psychiatry, 63, 856–864.

Download references

Acknowledgements

This study was supported by Bethune Charitable Foundation (ezmr2002-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Xue.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 134 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Shao, H., Wang, H. et al. Age-related impairment in fear memory extinction is restored by ketamine in middle-aged mice. Cogn Affect Behav Neurosci 23, 1374–1383 (2023). https://doi.org/10.3758/s13415-023-01118-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13415-023-01118-z

Keywords

Navigation