Skip to main content

Mood and implicit confidence independently fluctuate at different time scales


Mood is an important ingredient of decision-making. Human beings are immersed into a sea of ​​emotions where episodes of high mood alternate with episodes of low mood. While changes in mood are well characterized, little is known about how these fluctuations interact with metacognition, and in particular with confidence about our decisions. We evaluated how implicit measurements of confidence are related with mood states of human participants through two online longitudinal experiments involving mood self-reports and visual discrimination decision-making tasks. Implicit confidence was assessed on each session by monitoring the proportion of opt-out trials when an opt-out option was available, as well as the median reaction time on standard correct trials as a secondary proxy of confidence. We first report a strong coupling between mood, stress, food enjoyment, and quality of sleep reported by participants in the same session. Second, we confirmed that the proportion of opt-out responses as well as reaction times in non-opt-out trials provided reliable indices of confidence in each session. We introduce a normative measure of overconfidence based on the pattern of opt-out selection and the signal-detection-theory framework. Finally and crucially, we found that mood, sleep quality, food enjoyment, and stress level are not consistently coupled with these implicit confidence markers, but rather they fluctuate at different time scales: mood-related states display faster fluctuations (over one day or half-a-day) than confidence level (two-and-a-half days). Therefore, our findings suggest that spontaneous fluctuations of mood and confidence in decision making are independent in the healthy adult population.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Data and code is available in this repository for non-commercial use.


  • Averbeck, B. B., Evans, S., Chouhan, V., Bristow, E., & Shergill, S. S. (2011). Probabilistic learning and inference in schizophrenia. Schizophrenia Research, 127(1-3), 115–122.

    PubMed  Google Scholar 

  • Barrett, L. F., & Bliss-Moreau, E. (2009). Affect as a psychological primitive. Advances in Experimental Social Psychology, 41, 167–218.

    PubMed  PubMed Central  Google Scholar 

  • Barrett, A. B., Dienes, Z., & Seth, A. K. (2013). Measures of metacognition on signal-detection theoretic models. Psychological Methods.

  • Bassi, A., Colacito, R., & Fulghieri, P. (2016). ’O Sole Mio: An experimental analysis of weather and risk attitudes in financial decisions. SSRN Electronic Journal.

  • Bhatia, S., & Mullett, T. L. (2016). The dynamics of deferred decision. Cognitive Psychology, 86, 112–151.

    PubMed  Google Scholar 

  • Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., Borsboom, D., & Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE.

  • Brown, H. R., Zeidman, P., Smittenaar, P., Adams, R. A., McNab, F., Rutledge, R. B., & Dolan, R. J. (2014). Crowdsourcing for cognitive science – the utility of smartphones. PloS One, 9(7), e100662.

    PubMed  PubMed Central  Google Scholar 

  • Capretto, Tomás, Piho, Camen, Kumar, Ravin, Westfall, Jacob, Yarkoni, Tal, & Martin, Osvaldo A.. (2022). Bambi: A simple interface for fitting Bayesian linear models in python. Journal of Statistical Software, 103(15).

  • Carland, M. A., Thura, D., & Cisek, P. (2019). The urge to decide and act: implications for brain function and dysfunction. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 25(5), 491–511.

    PubMed  Google Scholar 

  • Clark, J. E., Watson, S., & Friston, K. J. (2018). What is mood? A computational perspective. Psychological Medicine.

  • Culot, C., & Gevers, W. (2021). Happy is easy: the influence of affective states on cognitive control and metacognitive reports. Cognition and Emotion, 35(6), 1195–1202.

  • Culot, C., Fantini-Hauwel, C., & Gevers, W. (2021). The influence of sad mood induction on task performance and metacognition. Quarterly Journal of Experimental Psychology, 74(9), 1605–1614.

  • Dagum, P. (2018). Digital biomarkers of cognitive function. NPJ Digital Medicine, 1(1), 10.

    PubMed  PubMed Central  Google Scholar 

  • Damasio, A. (2008). Descartes’ Error: Emotion, Reason and the Human Brain. Random House.

    Google Scholar 

  • David, A. S., Bedford, N., Wiffen, B., & Gilleen, J. (2014). Failures of metacognition and lack of insight in neuropsychiatric disorders. The Cognitive Neuroscience of Metacognition.

  • de Martino, B., de Martino, B., Fleming, S. M., Garrett, N., & Dolan, R. J. (2013). Confidence in value-based choice. Nature Neuroscience.

  • de Wild-Hartmann, J. A., Wichers, M., van Bemmel, A. L., Derom, C., Thiery, E., Jacobs, N., van Os, J., & Simons, C. J. P. (2013). Day-to-day associations between subjective sleep and affect in regard to future depression in a female population-based sample. British Journal of Psychiatry.

  • Dienes, Z., & Seth, A. (2010). Gambling on the unconscious: A comparison of wagering and confidence ratings as measures of awareness in an artificial grammar task. Consciousness and Cognition.

  • Edmans, A., Garcia, D., & Norli, O. (2007). Sports sentiment and stock returns. SSRN Electronic Journal.

  • Eldar, E., & Niv, Y. (2015). Interaction between emotional state and learning underlies mood instability. Nature Communications, 6, 6149.

    PubMed  PubMed Central  Google Scholar 

  • Eldar, E., Rutledge, R. B., Dolan, R. J., & Niv, Y. (2016). Mood as representation of momentum. Trends in Cognitive Sciences, 20(1), 15–24.

    PubMed  PubMed Central  Google Scholar 

  • Eldar, E., Roth, C., Dayan, P., & Dolan, R. J. (2018). Decodability of reward learning signals predicts mood fluctuations. Current Biology: CB, 28(9), 1433–39.e7.

    PubMed  Google Scholar 

  • Faivre, Nathan, Filevich, E., Solovey, G., Kühn, S., & Blanke, O. (2018). Behavioral, modeling, and electrophysiological evidence for supramodality in human metacognition. The Journal of Neuroscience, 38(2), 263–277.

  • Fleming, S. M., Massoni, S., Gajdos, T., & Vergnaud, J.-C. (2016). Metacognition about the past and future: quantifying common and distinct influences on prospective and retrospective judgments of self-performance. Neuroscience of Consciousness, 2016(1), niw018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fleming, S. M., Weil, R. S., Nagy, Z., Dolan, R. J., & Rees, G. (2010). Relating introspective accuracy to individual differences in brain structure. Science, 329(5998), 1541–1543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu, T., Koutstaal, W., Fu, C. H. Y., Poon, L., & Cleare, A. J. (2005). Depression, confidence, and decision: Evidence against depressive realism. Journal of Psychopathology and Behavioral Assessment.

  • García-Pérez, M. A., & Alcalá-Quintana, R. (2010). The difference model with guessing explains interval bias in two-alternative forced-choice detection procedures. Journal of Sensory Studies.

  • García-Pérez, M. A., & Alcalá-Quintana, R. (2017). The indecision model of psychophysical performance in dual-presentation tasks: Parameter estimation and comparative analysis of response formats. Frontiers in Psychology.

  • Gillan, C. M., & Rutledge, R. B. (2021). Smartphones and the neuroscience of mental health. Annual Review of Neuroscience.

  • Grimaldi, P., Lau, H., & Basso, M. A. (2015). There are things that we know that we know, and there are things that we do not know we do not know: Confidence in decision-making. Neuroscience and Biobehavioral Reviews, 55, 88–97.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartley, C. A., & Phelps, E. A. (2012). Anxiety and decision-making. Biological Psychiatry.

  • Hoven, M., Lebreton, M., Engelmann, J. B., Denys, D., Luigjes, J., & van Holst, R. J. (2019). Abnormalities of confidence in psychiatry: An overview and future perspectives. Translational Psychiatry, 9(1), 268.

    PubMed  PubMed Central  Google Scholar 

  • Huckvale, K., Venkatesh, S., & Christensen, H. (2019). Toward clinical digital phenotyping: A timely opportunity to consider purpose, quality, and safety. NPJ Digital Medicine, 2, 88.

    PubMed  PubMed Central  Google Scholar 

  • Hyman, S. E. (2010). The diagnosis of mental disorders: The problem of reification. Annual Review of Clinical Psychology.

  • Insabato, A., Pannunzi, M., & Deco, G. (2016). Neural correlates of metacognition: A critical perspective on current tasks. Neuroscience & Biobehavioral Reviews.

  • Insel, T. R. (2014). The NIMH research domain criteria (RDoC) project: Precision medicine for psychiatry. The American Journal of Psychiatry, 171(4), 395–397.

    PubMed  Google Scholar 

  • Insel, T. R. (2018). Digital phenotyping: A global tool for psychiatry. World Psychiatry: Official Journal of the World Psychiatric Association, 17(3), 276–277.

    Google Scholar 

  • Jardri, R., & Denève, S. (2013). Circular inferences in schizophrenia. Brain: A Journal of Neurology.

  • Jardri, R., Duverne, S., Litvinova, A. S., & Denève, S. (2017). Experimental evidence for circular inference in schizophrenia. Nature Communications, 8(1), 1–13.

    Google Scholar 

  • Jones, N. M., Johnson, M., Sathappan, A. V., & Torous, J. (2021). Benefits and limitations of implementing mental health apps among the working population. Psychiatric Annals, 51(2), 76–83.

    Google Scholar 

  • Kepecs, A., Uchida, N., Zariwala, H. A., & Mainen, Z. F. (2008). Neural correlates, computation and behavioural impact of decision confidence. Nature.

  • Kiani, R., & Shadlen, M. N. (2009). Representation of confidence associated with a decision by neurons in the parietal cortex. Science, 324(5928), 759–764.

    PubMed  PubMed Central  Google Scholar 

  • Kingdom, F. A. A., & Prins, N. (2016). Psychophysics: A Practical Introduction. Academic Press.

    Google Scholar 

  • Kleitman, S., & Stankov, L. (2007). Self-confidence and metacognitive processes. Learning and Individual Differences.

  • Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T., & Miyamoto, A. (2013). Responses of pulvinar neurons reflect a subject’s confidence in visual categorization. Nature Neuroscience, 16(6), 749–755.

    Article  PubMed  Google Scholar 

  • Lange, K., Kühn, S., & Filevich, E. (2015). ‘Just another tool for online studies’ (JATOS): An easy solution for setup and management of web servers supporting online studies. PLOS ONE.

  • Larsen, R. J., & Kasimatis, M. (1990). Individual differences in entrainment of mood to the weekly calendar. Journal of Personality and Social Psychology.

  • Leone, M. J., Slezak, D. F., Golombek, D., & Sigman, M. (2017). Time to decide: Diurnal variations on the speed and quality of human decisions. Cognition, 158, 44–55.

    PubMed  Google Scholar 

  • Lieberman, H. R., Tharion, W. J., Shukitt-Hale, B., Speckman, K. L., & Tulley, R. (2002). Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. navy seal training. Psychopharmacology, 164(3), 250–261.

    PubMed  Google Scholar 

  • Maner, J. K., Anthony Richey, J., Cromer, K., Mallott, M., Lejuez, C. W., Joiner, T. E., & Schmidt, N. B. (2007). Dispositional anxiety and risk-avoidant decision-making. Personality and Individual Differences.

  • Marsch, L. A. (2020). Digital health data-driven approaches to understand human behavior. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 46(1), 191–196.

    PubMed  Google Scholar 

  • Massoni, S. (2014). Emotion as a boost to metacognition: How worry enhances the quality of confidence. Consciousness and Cognition, 29, 189–198.

    PubMed  Google Scholar 

  • Massoni, S., Gajdos, T., & Vergnaud, J.-C. (2014). Confidence measurement in the light of signal detection theory. Frontiers in Psychology, 5, 1455.

    PubMed  PubMed Central  Google Scholar 

  • Marriott, F. H. C., & Pope, J. A. (1954). Bias in the estimation of autocorrelations. Biometrika.

  • Moore, D. A., & Healy, P. J. (2008). The trouble with overconfidence. Psychological Review, 115(2), 502–517.

    PubMed  Google Scholar 

  • Moors, A., Van de Cruys, S., & Pourtois, G. (2021). Comparison of the determinants for positive and negative affect proposed by appraisal theories, goal-directed theories, and predictive processing theories. Current Opinion in Behavioral Sciences, 39, 147–152.

    Google Scholar 

  • Moreno-Bote, R. (2010). Decision confidence and uncertainty in diffusion models with partially correlated neuronal integrators. Neural Computation, 22(7), 1786–1811.

    PubMed  Google Scholar 

  • Morphew, J. W. (2021). Changes in metacognitive monitoring accuracy in an introductory physics course. Metacognition and Learning.

  • Moutoussis, M., Bentall, R. P., El-Deredy, W., & Dayan, P. (2011). Bayesian modelling of jumping-to-conclusions bias in delusional patients. Cognitive Neuropsychiatry, 16(5), 422–447.

    PubMed  Google Scholar 

  • Moturu, S. T., Khayal, I., Aharony, N., Pan, W., and Pentland, A. S. (2011). Sleep, mood and sociability in a healthy population. Conference Proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 2011: 5267–70.

  • Otto, A. R., Fleming, S. M., & Glimcher, P. W. (2016). Unexpected but incidental positive outcomes predict real-world gambling. Psychological Science, 27(3), 299–311.

    PubMed  Google Scholar 

  • Pannunzi, M., Pérez-Bellido, A., Pereda-Baños, A., López-Moliner, J., Deco, G., & Soto-Faraco, S. (2015). Deconstructing multisensory enhancement in detection. Journal of Neurophysiology, 113(6), 1800–1818.

    Article  PubMed  Google Scholar 

  • Pritchett, L. M., & Murray, R. F. (2015). Classification images reveal decision variables and strategies in forced choice tasks. Proceedings of the National Academy of Sciences.

  • Raghunathan, R., & Pham, M. T. (1999). All negative moods are not equal: Motivational influences of anxiety and sadness on decision making. Organizational Behavior and Human Decision Processes.

  • Rouault, M., Seow, T., Gillan, C. M., & Fleming, S. M. (2018). Psychiatric symptom dimensions are associated with dissociable shifts in metacognition but not task performance. Biological Psychiatry.

  • Rounis, E., Maniscalco, B., Rothwell, J. C., Passingham, R. E., & Lau, H. (2010). Theta-burst transcranial magnetic stimulation to the prefrontal cortex impairs metacognitive visual awareness. Cognitive Neuroscience, 1(3), 165–175.

  • Rouy, M., Saliou, P., Nalborczyk, L., Pereira, M., Roux, P., & Faivre, N. (2021). Systematic review and meta-analysis of metacognitive abilities in individuals with schizophrenia spectrum disorders. Neuroscience and Biobehavioral Reviews, 126, 329–337.

    PubMed  Google Scholar 

  • Rubio, J. L., Ruiz-Veguilla, M., Hernández, L., Barrigón, M. L., Salcedo, M. D., Moreno, J. M., Gómez, E., Moritz, S., & Ferrín, M. (2011). Jumping to conclusions in psychosis: A faulty appraisal. Schizophrenia Research, 133(1-3), 199–204.

    PubMed  Google Scholar 

  • Rutledge, R. B., Skandali, N., Dayan, P., & Dolan, R. J. (2014). A computational and neural model of momentary subjective well-being. Proceedings of the National Academy of Sciences of the United States of America, 111(33), 12252–12257.

    PubMed  PubMed Central  Google Scholar 

  • Sanders, J. I., Hangya, B., & Kepecs, A. (2016). Signatures of a statistical computation in the human sense of confidence. Neuron.

  • Sano, A., Phillips, A. J., Yu, A. Z., McHill, A. W., Taylor, S., Jaques, N., Czeisler, C. A., Klerman, E. B., and Picard, R. W. (2015). “Recognizing academic performance, sleep quality, stress level, and mental health using personality traits, wearable sensors and mobile phones.” In: 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), 1–6. IEEE.

  • Schiller, D., Alessandra, N. C., Alia-Klein, N., Becker, S., Cromwell, H. C., Dolcos, F., Eslinger, P. J., Frewen, P., Kemp, A. H., Pace-Schott, E. F., Raber, J., Silton, R. L., Stefanova, E., Williams, J. H. G., Abe, N., Aghajani, M., Albrecht, F., Alexander, R., Anders, S., et al. (2022). The human affectome. PsyArXiv.

    Google Scholar 

  • Schustek, P., Hyafil, A., & Moreno-Bote, R. (2019). Human confidence judgments reflect reliability-based hierarchical integration of contextual information. Nature Communications.

  • Solovey, G., Shalom, D., Pérez-Schuster, V., & Sigman, M. (2016). Perceptual learning effect on decision and confidence thresholds. Consciousness and Cognition, 45, 24–36.

    PubMed  Google Scholar 

  • Stone, A. A., Schneider, S., & Harter, J. K. (2012). Day-of-week mood patterns in the United States: On the existence of ‘blue monday’, ‘thank god it’s friday’ and weekend effects. The Journal of Positive Psychology.

  • Taquet, M., Quoidbach, J., Gross, J. J., Saunders, K. E. A., & Goodwin, G. M. (2020). Mood homeostasis, low mood, and history of depression in 2 large population samples. JAMA Psychiatry, 77(9), 944–951.

    PubMed  Google Scholar 

  • Taquet, M., Quoidbach, J., Fried, E. I., & Goodwin, G. M. (2021). Mood homeostasis before and during the coronavirus disease 2019 (COVID-19) lockdown among Students in the Netherlands. JAMA Psychiatry.

  • Taylor, S. A., Jaques, N., Nosakhare, E., Sano, A., & Picard, R. (2017). Personalized multitask learning for predicting tomorrow’s mood, stress, and health. IEEE Transactions on Affective Computing, 1–1.

  • Torous, J., & Firth, J. (2016). The digital placebo effect: Mobile mental health meets clinical psychiatry. The Lancet. Psychiatry, 3(2), 100–102.

    PubMed  Google Scholar 

  • Triantafillou, S., Saeb, S., Lattie, E. G., Mohr, D. C., & Kording, K. P. (2019). Relationship between sleep quality and mood: Ecological momentary assessment study. JMIR Mental Health, 6(3), e12613.

    PubMed  PubMed Central  Google Scholar 

  • Urai, A. E., Braun, A., & Donner, T. H. (2017). Pupil-linked arousal is driven by decision uncertainty and alters serial choice bias. Nature Communications, 8(1), 1–11.

    Google Scholar 

  • van de Leemput, I. A., Wichers, M., Cramer, A. O. J., Borsboom, D., Tuerlinckx, F., Kuppens, P., Van Nes, E. H., et al. (2014). Critical slowing down as early warning for the onset and termination of depression. Proceedings of the National Academy of Sciences of the United States of America, 111(1), 87–92.

    PubMed  Google Scholar 

  • Vickers, D. (1979). Confidence. Decision Processes in Visual Perception.

  • Vickers, D. (2014). Decision Processes in Visual Perception. Academic Press.

    Google Scholar 

  • Vinckier, F., Rigoux, L., Oudiette, D., & Pessiglione, M. (2018). Neuro-computational account of how mood fluctuations arise and affect decision making. Nature Communications, 9(1), 1708.

    PubMed  PubMed Central  Google Scholar 

  • Wichers, M. (2014). The dynamic nature of depression: A new micro-level perspective of mental disorder that meets current challenges. Psychological Medicine.

  • Wyart, V., Nobre, A. C., & Summerfield, C. (2012). Dissociable prior influences of signal probability and relevance on visual contrast sensitivity. Proceedings of the National Academy of Sciences of the United States of America, February.

  • Xu, H. (2020). Big five personality traits and ambiguity management in career decision-making. The Career Development Quarterly.

  • Xu, S., Liu, Q., & Wang, C. (2021). Self-reported daily sleep quality modulates the impact of the framing effect on outcome evaluation in decision-making under uncertainty: An ERP study. Neuropsychologia.

  • Yeung, N., & Summerfield, C. (2012). Metacognition in human decision-making: Confidence and error monitoring. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367(1594), 1310–1321.

    PubMed  PubMed Central  Google Scholar 

Download references


The authors thank Aleksandar Matic for his contribution to designing the project and for very creative discussions about the results; Arnau Masdevall-Lara and Silvia Pérez-García for their help on developing the experimental paradigms, collecting and analysing pilot data; Guillermo Solovey and Andrés Taraciuk for productive discussions on the experimental code development. MdF was funded by grant “Linking Mood and Metacognition through a mobile based experimental platform” from Koa Heath B.V. (formerly Telefonica Innovation Alpha). RM-B is supported by BFU2017-85936-P from MINECO (Spain), the Howard Hughes Medical Institute (HHMI; ref 55008742), an ICREA Academia award, and the Bial Foundation (grant number 117/18). AH is funded by the Spanish State Research Agency (grants PSI-2015-74644-JIN from Jovenes-Investigadores programme; RYC-2017-23231 from Ramon y Cajal programme and Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D CEX2020-001084-M).

Author information

Authors and Affiliations


Corresponding author

Correspondence to María da Fonseca.

Ethics declarations

Conflict of interest

The researchers collaborated in the development of the Koa Health B.V. digital products. GM received salary support from Koa Health B.V.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


• Longitudinal study tracking mood-related states and decision uncertainty of subjects for a period of 10 consecutive days in everyday life settings.

• Self-reported mood-related states significantly correlate with each other.

• The proportion of opt-out responses (allowing skipping of the decision) and reaction time in non-optout correct trials implicitly track decision uncertainty in two discrimination tasks.

• There is no significant correlation between daily fluctuations of mood and session-confidence markers.

• Mood-related states and confidence fluctuate at different time scales.

Supplementary information


(PDF 1.34 mb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Fonseca, M., Maffei, G., Moreno-Bote, R. et al. Mood and implicit confidence independently fluctuate at different time scales. Cogn Affect Behav Neurosci 23, 142–161 (2023).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Stress
  • Bayesian linear mixed models
  • Metacognition
  • Online experiment
  • Longitudinal experiment
  • Decision-making