Advertisement

Liking and left amygdala activity during food versus nonfood processing are modulated by emotional context

  • Isabel García-GarcíaEmail author
  • Jana Kube
  • Filip Morys
  • Anne Schrimpf
  • Ahmad S. Kanaan
  • Michael Gaebler
  • Arno Villringer
  • Alain Dagher
  • Annette Horstmann
  • Jane Neumann
Article

Abstract

Emotions can influence our eating behaviors. Facing an acute stressor or being in a positive mood are examples of situations that tend to modify appetite. However, the question of how the brain integrates these emotion-related changes in food processing remains elusive. Here, we designed an emotional priming fMRI task to test if amygdala activity during food pictures differs depending on the emotional context. Fifty-eight female participants completed a novel emotional priming task, in which emotional images of negative, neutral, or positive situations were followed by pictures of either foods or objects. After priming in each trial, participants rated how much they liked the shown foods or objects. We analyzed how brain activity during the contrast “foods > objects” changed according to the emotional context—in the whole brain and in the amygdala. We also examined the potential effect of adiposity (i.e., waist circumference). We observed a higher difference between liking scores for foods and objects after positive priming than after neutral priming. In the left amygdala, activity in the contrast “foods > objects” was higher after neutral priming relative to negative priming. Waist circumference was not significantly related to this emotional priming effect on food processing. Our results suggest that emotional context alters food and nonfood perception, both in terms of liking scores and with regard to engagement of the left amygdala. Moreover, our findings indicate that emotional context has an impact on the salience advantage of food, possibly affecting eating behavior.

Keywords

Emotional priming Eating Neuroimaging Amygdala Food cue reactivity 

Notes

Acknowledgements

We thank all the participants for their collaboration in the study. We also thank Bettina Johst, Ramona Menger, and Nicole Pampus for technical support during the preparation of the study and data recruitment.

I.G.G. is supported by a postdoctoral fellowship from the Canadian Institutes of Health Research. M.G. is supported by the Federal Ministry of Education and Research (Grant No. 13GW0206B). A.D. is funded by the Canadian Institutes of Health Research. A.H. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Project No. 209933838–SFB 1052 and by the German Federal Ministry of Education and Research (FKZ: 01EO1501). J.N. was supported by the German Federal Ministry of Education and Research (FKZ: 01EO1001). None of the authors declares a potential conflict of interest.

Open practice statement

The study was not formally preregistered. The analysis code and task-related materials are available in Open Science Framework (https://osf.io/v49ez/).

Whole-brain unthresholded T maps are available in NeuroVault Nutritional collection (https://identifiers.org/neurovault.collection:5964). The data set will be available from the corresponding author on reasonable request.

References

  1. Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D., & Murray, E. A. (2000). Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. Journal of Neuroscience, 20, 4311–4319. doi: https://doi.org/10.1523/jneurosci.20-11-04311.2000 CrossRefPubMedGoogle Scholar
  2. Block, J. P., He, Y., Zaslavsky, A. M., Ding, L., & Ayanian, J. Z. (2009). Psychosocial stress and change in weight among US adults. American Journal of Epidemiology, 170, 181–192. doi: https://doi.org/10.1093/aje/kwp104 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bodgan, R., & Pizzagalli, D. A. (2016). Acute stress reduces reward responsiveness: Implications for depression. Biological Psychiatry, 60(10), 1147–1154. doi: https://doi.org/10.1016/j.biopsych.2006.03.037 CrossRefGoogle Scholar
  4. Bongers, P., Jansen, A., Houben, K., & Roefs, A. (2013). Happy eating: The single target implicit association test predicts overeating after positive emotions. Eating Behaviors, 14(3), 348–355. doi: https://doi.org/10.1016/j.eatbeh.2013.06.007 CrossRefPubMedGoogle Scholar
  5. Born, J. M., Lemmens, S. G., Rutters, F., Nieuwenhuizen, A. G., Formisano, E., Goebel, R., & Westerterp-Plantenga, M. S. (2009). Acute stress and food-related reward activation in the brain during food choice during eating in the absence of hunger. International Journal of Obesity, 34(1), 172–181. doi: https://doi.org/10.1038/ijo.2009.221 CrossRefPubMedGoogle Scholar
  6. Charbonnier, L., van Meer, F., Johnstone, A. M., Crabtree, D., Buosi, W., Manios, Y., . . . Smeets, P. A. M. (2018). Effects of hunger state on the brain responses to food cues across the life span. NeuroImage, 171, 246–255. doi: https://doi.org/10.1016/j.neuroimage.2018.01.012 CrossRefPubMedGoogle Scholar
  7. Charpentier, C. J., De Martino, B., Sim, A. L., Sharot, T., & Roiser, J. P. (2016). Emotion-induced loss aversion and striatal-amygdala coupling in low-anxious individuals. Social Cognitive and Affective Neuroscience, 11(4), 569–579. doi: https://doi.org/10.1093/scan/nsv139 CrossRefPubMedGoogle Scholar
  8. Clithero, J. A., & Rangel, A. (2013). Informatic parcellation of the network involved in the computation of subjective value. Social Cognitive and Affective Neuroscience, 9, 1289–1302. doi: https://doi.org/10.1093/scan/nst106 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Evers, C., Adriaanse, M., de Ridder, D. T. D., & de Witt Huberts, J. C. (2013). Good mood food: Positive emotion as a neglected trigger for food intake. Appetite, 68, 1–7. doi: https://doi.org/10.1016/j.appet.2013.04.007 CrossRefPubMedGoogle Scholar
  10. Evers, C., Marijn Stok, F., & de Ridder, D. T. D. (2010). Feeding your feelings: emotion regulation strategies and emotional eating. Personality and Social Psychology Bulletin, 36(6), 792–804. doi: https://doi.org/10.1177/0146167210371383 CrossRefPubMedGoogle Scholar
  11. Fischer, S., Breithaupt, L., Wonderlich, J., Westwater, M. L., Crosby, R. D., Engel, S. G., . . . Wonderlich, S. (2017). Impact of the neural correlates of stress and cue reactivity on stress related binge eating in the natural environment. Journal of Psychiatric Research, 92, 15–23. doi: https://doi.org/10.1016/j.jpsychires.2017.03.017 CrossRefGoogle Scholar
  12. Fiuzat, E. C., Rhodes, S. E. V., & Murray, E. A. (2017). The role of orbitofrontal–amygdala interactions in updating action–outcome valuations in macaques. Journal of Neuroscience, 37, 2463–2470. doi: https://doi.org/10.1523/jneurosci.1839-16.2017 CrossRefPubMedGoogle Scholar
  13. Foroni, F., Pergola, G., Argiris, G., & Rumiati, R. I. (2013). The FoodCast Research Image Database (FRIDa). Frontiers in Human Neuroscience, 7, 51. doi: https://doi.org/10.3389/fnhum.2013.00051 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fujishiro, K., Lawson, C. C., Hibert, E. L., Chavarro, J. E., & Rich-Edwards, J. W. (2015). Job strain and changes in the body mass index among working women: A prospective study. International Journal of Obesity, 39(9), 1395–1400. doi: https://doi.org/10.1038/ijo.2015.91 CrossRefPubMedGoogle Scholar
  15. García-García, I., Horstmann, A., Jurado, M. A., Garolera, M., Chaudhry, S. J., Margulies, D. S., . . . Neumann, J. (2014). Reward processing in obesity, substance addiction and non-substance addiction. Obesity Reviews, 15(11), 853–869. doi: https://doi.org/10.1111/obr.12221 CrossRefGoogle Scholar
  16. García-García, I., Kube, J., Gaebler, M., Horstmann, A., Villringer, A., & Neumann, J. (2016). Neural processing of negative emotional stimuli and the influence of age, sex and task-related characteristics. Neuroscience & Biobehavioral Reviews, 68, 773–793. doi: https://doi.org/10.1016/j.neubiorev.2016.04.020 CrossRefGoogle Scholar
  17. Geliebter, A., & Aversa, A. (2003). Emotional eating in overweight, normal weight, and underweight individuals. Eating Behaviors, 3(4), 341–347. doi: https://doi.org/10.1016/S1471-0153(02)00100-9 CrossRefPubMedGoogle Scholar
  18. Greimel, E., Macht, M., Krumhuber, E., & Ellgring, H. (2006). Facial and affective reactions to tastes and their modulation by sadness and joy. Physiology & Behavior, 89(2), 261–269. doi: https://doi.org/10.1016/j.physbeh.2006.06.002 CrossRefGoogle Scholar
  19. Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4–26. doi: https://doi.org/10.1038/npp.2009.129 CrossRefGoogle Scholar
  20. Janak, P. H., & Tye, K. M. (2015). From circuits to behaviour in the amygdala. Nature, 517, 284–292. doi: https://doi.org/10.1038/nature14188 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kantono, K., Hamid, N., Shepherd, D., Yoo, M. J. Y., Grazioli, G., & Carr, B. T. (2016). Listening to music can influence hedonic and sensory perceptions of gelati. Appetite, 100, 244–255. doi: https://doi.org/10.1016/j.appet.2016.02.143 CrossRefPubMedGoogle Scholar
  22. Kivimäki, M., Head, J., Ferrie, J. E., Shipley, M. J., Brunner, E., Vahtera, J., & Marmot, M. G. (2006). Work stress, weight gain and weight loss: Evidence for bidirectional effects of job strain on body mass index in the Whitehall II study. International Journal of Obesity, 30(6), 982–987. doi: https://doi.org/10.1038/sj.ijo.0803229 CrossRefPubMedGoogle Scholar
  23. Laitinen, J., Ek, E., & Sovio, U. (2002). Stress-related eating and drinking behavior and body mass index and predictors of this behavior. Preventive Medicine, 34(1), 29–39. doi: https://doi.org/10.1006/pmed.2001.0948 CrossRefPubMedGoogle Scholar
  24. Lindquist, K. A., Satpute, A. B., Wager, T. D., Weber, J., & Barrett, L. F. (2016). The brain basis of positive and negative affect: Evidence from a meta-analysis of the human neuroimaging literature. Cerebral Cortex, 26(5), 1910–1922. doi: https://doi.org/10.1093/cercor/bhv001 CrossRefPubMedGoogle Scholar
  25. Macht, M. (2008). How emotions affect eating: A five-way model. Appetite, 50, 1–11. doi: https://doi.org/10.1016/j.appet.2007.07.002 CrossRefPubMedGoogle Scholar
  26. Maier, S. U., Makwana, A. B., & Hare, T. A. (2015). Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron, 87, 621–631. doi: https://doi.org/10.1016/j.neuron.2015.07.005 CrossRefPubMedGoogle Scholar
  27. Neseliler, S., Tannenbaum, B., Zacchia, M., Larcher, K., Coulter, K., Lamarche, M., . . . Dagher, A. (2017). Academic stress and personality interact to increase the neural response to high-calorie food cues. Appetite, 116, 306–314. doi: https://doi.org/10.1016/j.appet.2017.05.016 CrossRefGoogle Scholar
  28. Paquet, C., St-Arnaud-McKenzie, D., Kergoat, M.-J., Ferland, G., & Dube, L. (2003). Direct and indirect effects of everyday emotions on food intake of elderly patients in institutions. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(2), M153–M158. doi: https://doi.org/10.1093/gerona/58.2.m153 CrossRefGoogle Scholar
  29. Phelps, E. A., Delgado, M. R., Nearing, K. I., & Ledoux, J. E. (2004). Extinction learning in humans: Role of the amygdala and vmPFC. Neuron, 43, 897–905. doi: https://doi.org/10.1016/j.neuron.2004.08.042 CrossRefPubMedGoogle Scholar
  30. Pichon, S., Rieger, S.W., & Vuilleumier, P., 2012. Persistent affective biases in human amygdala response following implicit priming with negative emotion concepts. NeuroImage, 62, 1610–1621. doi: https://doi.org/10.1016/j.neuroimage.2012.06.004 CrossRefPubMedGoogle Scholar
  31. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 2142–2154. doi: https://doi.org/10.1016/j.neuroimage.2011.10.018 CrossRefPubMedGoogle Scholar
  32. Schulz, P., Schlotz, W., & Becker, P. (2004). Trierer Inventar zum chronischen Stress: TICS [Trierer Inventory for Chronic Stress: TICS]. Göttingen, Germany: Hogrefe Verlag.Google Scholar
  33. Seo, D., Funderburk, S. C., Bhatti, D. L., Motard, L. E., Newbold, D., Girven, K. S., . . . Bruchas, M. R. (2016). A GABAergic projection from the centromedial nuclei of the amygdala to ventromedial prefrontal cortex modulates reward behavior. Journal of Neuroscience, 36(42), 10831–10842. doi: https://doi.org/10.1523/JNEUROSCI.1164-16.2016 CrossRefGoogle Scholar
  34. Sescousse, G., Caldu, X., Segura, B., & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 37(4), 681–696. doi: https://doi.org/10.1016/j.neubiorev.2013.02.002 CrossRefGoogle Scholar
  35. Sominsky, L., & Spencer, S. J. (2014). Eating behavior and stress: A pathway to obesity. Frontiers in Psychology, 5, 434. doi: https://doi.org/10.3389/fpsyg.2014.00434 CrossRefPubMedPubMedCentralGoogle Scholar
  36. St. Onge, J. R., Stopper, C. M., Zahm, D. S., & Floresco, S. B. (2012). Separate prefrontal-subcortical circuits mediate different components of risk-based decision making. Journal of Neuroscience, 32, 2886–2899. doi: https://doi.org/10.1523/jneurosci.5625-11.2012 CrossRefPubMedGoogle Scholar
  37. Stunkard, A. J., & Messick, S. (1985). The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. Journal of Psychosomatic Research, 29(1), 71–83. doi: https://doi.org/10.1016/0022-3999(85)90010-8 CrossRefPubMedGoogle Scholar
  38. Tang, D. W., Fellows, L. K., Small, D. M., & Dagher, A. (2012). Food and drug cues activate similar brain regions: A meta-analysis of functional MRI studies. Physiology & Behavior, 106(3), 317–324. doi: https://doi.org/10.1016/j.physbeh.2012.03.009 CrossRefGoogle Scholar
  39. van der Laan, L. N., de Ridder, D. T., Viergever, M. A., & Smeets, P. A. (2011). The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. NeuroImage, 55, 296–303. doi: https://doi.org/10.1016/j.neuroimage.2010.11.055 CrossRefPubMedGoogle Scholar
  40. Watabe-Uchida, M., Zhu, L., Ogawa, S. K., Vamanrao, A., & Uchida, N. (2012). Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron, 74, 858–873. doi: https://doi.org/10.1016/j.neuron.2012.03.017 CrossRefPubMedGoogle Scholar
  41. Wessa, M., Kanske, P., Neumeister, P., Bode, K., Heissler, J., & Schönfelder, S. (2010). EmoPics: Subjektive und psychophysiologische Evaluation neuen Bildmaterials für die klinisch-bio-psychologische Forschung [EmoPics: Subjective and psychophysiological evaluation of new visual material for clinical biopsychological research]. Z. Klin. Psychol. Psychother, 39, 77.Google Scholar
  42. Wonderlich, J. A., Breithaupt, L., Thompson, J. C., Crosby, R. D., Engel, S. G., & Fischer, S. (2018). The impact of neural responses to food cues following stress on trajectories of negative and positive affect and binge eating in daily life. Journal of Psychiatric Research, 102, 14–22. doi: https://doi.org/10.1016/j.jpsychires.2018.03.005 CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Isabel García-García
    • 1
    Email author
  • Jana Kube
    • 2
    • 3
  • Filip Morys
    • 1
    • 2
  • Anne Schrimpf
    • 2
    • 3
  • Ahmad S. Kanaan
    • 2
  • Michael Gaebler
    • 2
    • 4
  • Arno Villringer
    • 2
    • 3
  • Alain Dagher
    • 1
  • Annette Horstmann
    • 2
    • 3
  • Jane Neumann
    • 2
    • 3
    • 5
  1. 1.Montreal Neurological InstituteMcGill UniversityMontrealCanada
  2. 2.Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
  3. 3.Leipzig University Medical CenterIFB Adiposity DiseasesLeipzigGermany
  4. 4.MindBrainBody Institute at the Berlin School of Mind and BrainHumboldt-Universität zu BerlinBerlinGermany
  5. 5.Department of Medical Engineering and BiotechnologyUniversity of Applied SciencesJenaGermany

Personalised recommendations