Individual differences in baseline oculometrics: Examining variation in baseline pupil diameter, spontaneous eye blink rate, and fixation stability

  • Nash UnsworthEmail author
  • Matthew K. Robison
  • Ashley L. Miller


Individual differences in baseline oculometrics (baseline pupil diameter, spontaneous eye blink rate, fixation stability), and their relation with cognitive abilities, personality traits, and self-report assessments were examined. Participants performed a baseline eye measure in which they were instructed to stare at a fixation point onscreen for 5 min. Following the baseline eye measure, participants completed a questionnaire asking what they were thinking about during the baseline eye measure. Participants also completed various cognitive ability measures assessing working memory capacity, attention control, and off-task thinking. Finally, participants completed a number of questionnaires assessing personality, Attention Deficit/Hyperactivity Disorder symptomology, mind wandering, and morningness-eveningness. Overall, the vast majority of correlations with the baseline eye measures were weak and nonsignificant, suggesting that these associations may not be very robust. The results also demonstrated the importance of examining what participants are thinking about during the baseline measure. These results add to the growing body of findings suggesting inconsistent relations between different baseline eye measures and various individual differences constructs.


Cognitive control Norephinephrine Dopamine Working memory 



  1. Ahern, S. K., & Beatty, J. (1979). Pupillary responses during information processing vary with Scholastic Aptitude Test scores. Science, 205, 1289–1292.CrossRefPubMedGoogle Scholar
  2. Alnaes, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P., & Laeng, B. (2014). Pupil size signals mental effort deployed during multiple object tracking and predicts brain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14, 1-20.CrossRefPubMedGoogle Scholar
  3. Anderson, C., Colombo, J., & Unruh, D. J. (2013). Pupil and salivary indicators of autonomic dysfunction in autism spectrum disorder. Developmental Psychobiology, 55, 465-482.CrossRefPubMedGoogle Scholar
  4. Anderson, C.J., & Colombo, J. (2009). Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology, 51, 207–211CrossRefPubMedPubMedCentralGoogle Scholar
  5. Aston-Jones G., & Cohen J.D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403-450.CrossRefPubMedGoogle Scholar
  6. Beatty, J., Lucero-Wagoner, B., 2000. The pupillary system. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (Eds.), Handbook of Psychophysiology (pp. 142-162). Cambridge University Press, New York.Google Scholar
  7. Benson, P. J., Beedie, S. A., Shephard, E., Giegling, I., Rujescu, D., and St Clair, D. (2012). Simple viewing tests can detect eye movement abnormalities that distinguish schizophrenia cases from controls with exceptional accuracy. Biological Psychiatry 72, 716–724.CrossRefPubMedGoogle Scholar
  8. Berridge C.W., Waterhouse B.D. (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 33-84.CrossRefPubMedGoogle Scholar
  9. Birren, J. E., Casperson, R. C., & Botwinick, J. (1950). Age changes in pupil size. Journal of Gerontology, 5, 216-221.CrossRefPubMedGoogle Scholar
  10. Boersma, F., Wilton, K., Barham, R. & Muir, W. (1970). Effects of arithmetic problem difficulty on pupillary dilation in normals and educable retardates. Journal of Experimental Child Psychology, 9, 142-155.CrossRefPubMedGoogle Scholar
  11. Bornemann, B., Foth, M., Horn, J., Ries, J., Warmuth, E., Wartenburger, I., & van der Meer, E., (2010). Mathematical cognition – Individual differences in resource allocation. The International Journal of Mathematics Education, 42, 555-567.Google Scholar
  12. Braver, T.S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Science 16, 106-13.CrossRefGoogle Scholar
  13. Braver, T.S., Gray, J.R., and Burgess, G.C. (2007). Explaining the Many Varieties of Working Memory Variation: Dual Mechanisms of Cognitive Control. In A.R.A Conway, C. Jarrold, M.J. Kane, A. Miyake, & J.N. Towse (Eds.), Variation in Working Memory. New York: Oxford.Google Scholar
  14. Breeden, A.L., Siegle, G.J., Norr, M.E., Gordon, E.M., & Vaidya, C.J. (2017). Coupling between spontaneous pupillary fluctuations and brain activity relates to inattentiveness. European Journal of Neuroscience, 45, 260-266.CrossRefPubMedGoogle Scholar
  15. Broadway, J.M., Frank, M.J., & Cavanagh, J.F (in press). Dopamine D2 agonist affects visuospatial working memory distractor interference depending on individual differences in baseline working memory span. Cognitive, Affective, & Behavioral Neuroscience.Google Scholar
  16. Bromberg-Martin ES, Matsumoto M, Hikosaka O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68, 815-834.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Burton, J.J., Pandita, M., Thakkar, K., Goff, D.C., Manoach, D.S., 2008. The relation between antisaccade errors, fixation stability and prosaccade errors in schizophrenia. Experimental Brain Research 186, 273–282.CrossRefGoogle Scholar
  18. Carriere, J. S. A., Seli, P., & Smilek, D. (2013). Wandering in both mind and body: Individual differences in mind wandering and inattention predict fidgeting. Canadian Journal of Experimental Psychology, 67, 19-31.CrossRefPubMedGoogle Scholar
  19. Chamberlain S.R., Robbins T.W. (2013). Noradrenergic modulation of cognition: Therapeutic implications. Journal of Psychopharmacology, 27, 694–718CrossRefPubMedGoogle Scholar
  20. Cohen JD, Aston-Jones G & Gilzenrat MS (2004). A systems-level perspective on attention and cognitive control: Guided activation, adaptive gating, conflict monitoring, and exploitation vs.exploration. In Posner MI (Ed.), Cognitive Neuroscience of Attention. New York: Guilford Press. Pp. 71-90.Google Scholar
  21. Colzato, L.S., van den Wildenberg, W.P.M., van Wouwe, N.C., Pannebakker, M.M., Hommel, B., (2009). Dopamine and inhibitory action control: Evidence from spontaneous eye blink rates. Experimental Brain Research, 196, 467–474.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cools, R (2016). The cost and benefits of brain dopamine in cognitive control. WIREs Cognitive Science, 7, 317-329.CrossRefPubMedGoogle Scholar
  23. Cools, R., D’Esposito, M., (2011). Inverted-u-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69, e113–e125.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cools, R., Roberts, A.C., Robbins, T.W., (2008). Serotoninergic regulation of emotional and behavioural control processes. Trends in Cognitive Science, 12, 31–40.CrossRefGoogle Scholar
  25. Crough, D.G. (1971). An investigation of differential pupillary response between groups differing in reasoning ability. Dissertation Abstracts International, 32, 1870B.Google Scholar
  26. D’Ardenne, K., Eshel N., Luka J., Lenartowicz A., Nystrom L.E., & Cohen J.D. (2012). Role of prefrontal cortex and the midbrain dopamine system in working memory updating. Proceedings of the National Academy of Sciences, 109, 19900–19909.CrossRefGoogle Scholar
  27. Damilou, A., Apostolakis, S., Thrapsanioti, E., Theleritis, C., & Smyrnis, N. (2016). Shared and distinct oculomotor function deficits in schizophrenia and obsessive compulsive disorder. Psychophysiology, 53, 796–805.CrossRefPubMedGoogle Scholar
  28. Dang, J., Xiao, S., Liu, Y., Jiang, Y., Mao, L. (2016). Individual differences in dopamine level modulate the ego depletion effect. International Journal of Psychophysiology, 99, 121–124.CrossRefPubMedGoogle Scholar
  29. de Winter, J. C. F., Gosling, S. D., and Potter, J. (2016). Comparing the Pearson and Spearman correlation coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychological Methods, 21, 273–290.CrossRefPubMedGoogle Scholar
  30. Delamillieure P., Doucet G., Mazoyer B., Turbelina M., Delcroix N., Mellet E., et al. (2010). The resting state questionnaire: An introspective questionnaire for evaluation of inner experience during the conscious resting state. Brain Research Bulletin, 81, 565–573CrossRefPubMedGoogle Scholar
  31. Di Russo, F., Pitzalis, S., Spinelli, D., (2003). Fixation stability and saccadic latency in elite shooters. Vision Research 43, 1837–1845CrossRefPubMedGoogle Scholar
  32. Diaz B. A., VanDerSluis S., Moens S., Benjamins J. S., Migliorati F., Stoffers D., et al. (2013). The Amsterdam resting state questionnaire reveals multiple phenotypes of resting-state cognition. Frontiers in Human Neuroscience, 7:446.PubMedPubMedCentralGoogle Scholar
  33. Dinges, D. F., & Powell, J.W. (1985). Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behavior Research Methods, Instruments, & Computers, 17, 652-655.CrossRefGoogle Scholar
  34. Dreisbach, G., Müller, J., Goschke, T., Strobel, A., Schulze, K., Lesch, K.-P., Brocke, B. (2005). Dopamine and cognitive control: The influence of spontaneous eyeblink rate and dopamine gene polymorphisms on perseveration and distractibility. Behavioral Neuroscience, 119, 483–490.CrossRefPubMedGoogle Scholar
  35. DuPaul, G. J., Power, T. J., Anastopoulos, A. D. & Reid, R. (1998). ADHD Rating Scale-IV : Checklists, Norms, and Clinical Interpretation. Guilford: New York.Google Scholar
  36. Eggert T, Sauter, C. Popp, R. Zeitlhofer, J., Danker-Hopfe, H., (2012). The Pupillographic Sleepiness Test in adults: Effect of, age, gender, and time of day on pupillometric variables. American Journal of Human Biology, 24, 820–828CrossRefPubMedGoogle Scholar
  37. Franklin, M. S., Broadway, J. M., Mrazek, M. D., Smallwood, J., & Schooler, J. W. (2013). Window to the wandering mind: Pupillometry of spontaneous thought while reading. The Quarterly Journal of Experimental Psychology, 1-15.Google Scholar
  38. Fransson, P., Flodin, P., Semyr, G.O., Pansell, T., 2014. Slow fluctuations in eye position and resting-state functional magnetic resonance imaging brain activity during visual fixation. European Journal of Neuroscience, 40, 3828–3835.CrossRefPubMedGoogle Scholar
  39. Fried, M., Tsitsiashvili, E., Bonney, Y.S., Sterkin, A., Wygnanski-Jaffe, T., Epstein, T., & Polat, U. (2014). ADHD subjects fail to suppress eye blinks and mircosaccades while anticipating visual stimuli but recover with medication. Vision Research, 101, 62-72.CrossRefPubMedGoogle Scholar
  40. Gignac, G. E., & Szodorai, E. (2016). Effect size guidelines for individual differences researchers. Personality and Individual Differences, 102, 74-78.CrossRefGoogle Scholar
  41. Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10, 252–269.CrossRefGoogle Scholar
  42. Gorgolewski K, Lurie, D, Craddock, C, Millham, M, Margulies, D.M & Smallwood, K. (2014). Correspondence between the brains functional architecture and the quality and form of self-generated thoughts. PLoS One, 9, e97176.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Grandchamp, R., Braboszcz, C., & Delorme, A. (2014). Occulometric variations during mind wandering. Frontiers in Psychology, 5, 31.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Granholm, E., & Steinhauer, S. R. (2004). Pupillometric measures of cognitive and emotional processes. International Journal of Psychophysiology, 52, 1–6.CrossRefPubMedGoogle Scholar
  45. Heitz, R. P., Schrock, J. C., Payne, T. W., & Engle, R. W. (2008). Effects of incentive on working memory capacity: Behavioral and pupillometric data. Psychophysiology, 45, 119–129.PubMedGoogle Scholar
  46. Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Halszka, J. & van de Weijer, J. (2011). Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford University Press, Oxford.Google Scholar
  47. Hopstaken, J.F., van deer Linden, D., Bakker, A.B. & Kompier, M. A. J. (2015a). A multifaceted investigation of the link between mental fatigue and task disengagement. Psychophysiology, 52, 305-315.CrossRefPubMedGoogle Scholar
  48. Hopstaken, J.F, van deer Linden, D., Bakker, A.B., & Kompier, M.A.J. (2015b). The window of my eyes: Task disengagement and mental fatigue covary with pupil dynamics. Biological Psychology, 110, 100-106.CrossRefPubMedGoogle Scholar
  49. Horne J.A. & Östberg O. (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. International Journal of Chronobiology, 4, 97-100.PubMedGoogle Scholar
  50. Hou R.H., Freeman C., Langley R.W., Szabadi E., Bradshaw C.M. (2005). Does modafinil activate the locus coeruleus in man? Comparison of modafinil and clonidine on arousal and autonomic functions in human volunteers. Psychopharmacology, 181, 537–549.CrossRefPubMedGoogle Scholar
  51. Hurlburt, R. T., Alderson-Day, B., Fernyhough, C., and Kühn, S. (2015). What goes on in the resting-state? a qualitative glimpse into resting-state experience in the scanner. Frontiers in Psychology, 6. Google Scholar
  52. Janisse, M.P. (1977). Pupillometry: The Psychology of the Pupillary Response. Washington, D.C.: Hemisphere Publishing Co.Google Scholar
  53. Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration-exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23, 1587-1596.CrossRefPubMedGoogle Scholar
  54. John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big-Five trait taxonomy: History, measurement, and conceptual issues. In O. P. John, R. W. Robins, & L. A. Pervin (Eds.), Handbook of personality: Theory and research (3rd ed., pp. 114 –158). New York, NY: Guilford Press.Google Scholar
  55. Jongkees, B.J., Colzato, L.S. (2016). Spontaneous eye blink rate as predictor of dopamine-related cognitive function—A review. Neuroscience and Biobehavioral Reviews, 71, 58–82.CrossRefPubMedGoogle Scholar
  56. Joshi, S., Li, Y., Kalwani, R.M., & Gold, J.I. (2016). Relationship between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89, 221-234.CrossRefPubMedGoogle Scholar
  57. Kane, M.J., Bleckley, M.K., Conway, A.R.A., & Engle, R.W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130, 169-183.CrossRefGoogle Scholar
  58. Kessler, R.C., Adler, L., Ames, M., Demler, O., Faraone, S., Hiripi, E., Howes, M.J., Jin, R., Secnik, K., Spencer, T., Ustün, T.B., Walters, E.E. (2005). The World Health Organization Adult ADHD Self-Report Scale (ASRS): A short screening scale for use in the general population. Psychological Medicine, 35, 245–256.CrossRefPubMedGoogle Scholar
  59. Kimberg, D. Y., D’Esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport, 8, 3581–3585CrossRefPubMedGoogle Scholar
  60. Krauzlis, R.J., Goffart, L., Hafed, Z.M. (2017). Neuronal control of fixation and fixational eye movements. Philosophical Transactions of the Royal Society B, 372, 20160205.CrossRefGoogle Scholar
  61. Kristjansson, S.D., Stern, J.A., Brown, T.B., & Rohrbaugh, J.W. (2009). Detecting phasic lapses of alterness using pupillometric measures. Applied Ergonomics, 40, 978-986.CrossRefPubMedGoogle Scholar
  62. Kuchinsky, S.E., Pandža, N.B., Haarmann, H.J. (2016) Linking indices of tonic alertness: Resting-state pupil dilation and cingulo-opercular neural activity. In: Schmorrow D., Fidopiastis C. (Eds.) Foundations of augmented cognition: Neuroergonomics and operational neuroscience. Google Scholar
  63. Landau, S. M., Lal, R., O’Neil, J. P., Baker, S., & Jagust, W. J. (2009). Striatal dopamine and working memory. Cerebral Cortex, 19, 445–454.CrossRefPubMedGoogle Scholar
  64. Laretzaki, G., Plainis, S., Vrettos, I., Chrisoulakis, A., Pallikaris, I., & Bitsios, P. (2011). Threat and trait anxiety affect stability of gaze fixation. Biological Psychology, 86, 330 –336.CrossRefPubMedGoogle Scholar
  65. Liakos, A., & Crisp, A.H. (1971). Pupil size in psychoneurotic patients. Psychotherapy and Psychosomatics, 19, 104-110.CrossRefPubMedGoogle Scholar
  66. Loewenfeld, I. E. (1993). The Pupil: Anatomy, Physiology, and Clinical Applications. Ames: Iowa State University Press.Google Scholar
  67. Lowenstein, O., Feinberg, R., & Lowenfeld, I.E. (1963). Pupillary movements during acute and chronic fatigue: A new test for the objective evaluation of tiredness. Investigative Ophthalmology, 2, 138-157.Google Scholar
  68. MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 19-40.CrossRefPubMedGoogle Scholar
  69. McLaren, J.W., Erie, J.C., & Brubaker, R.F. (1992). Computerized analysis of pupillograms in studies of alertness. Investigative Ophthalmology & Visual Science, 33, 671-676.Google Scholar
  70. Mittner, M., Boekel, W., Tucker, A., Turner, B. M., Heathcote, A., & Forstmann, B. U. (2014). When the brain takes a break: A model-based analysis of mind wandering. The Journal of Neuroscience, 34, 16286-16295.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Morad, Y., Lemberg, H., Yofe, N., Dagan, Y. (2000). Pupillography as an objective indicator of fatigue. Current Eye Research, 21, 535–542.CrossRefPubMedGoogle Scholar
  72. Munoz, D.P., Armstrong, I.T., Hampton, K.A., Moore, K.D., (2003). Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. Journal of Neurophysiology 90, 503–514.CrossRefPubMedGoogle Scholar
  73. Murphy P.R., O'Connell R.G., O'Sullivan M., Robertson I.H., Balsters J.H. (2014) Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping 35, 4140–4154.CrossRefPubMedGoogle Scholar
  74. Murphy, P.R., Robertson, I.H., Balsters, J.H. & O’Connell, R.G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology, 48, 1532-43.CrossRefPubMedGoogle Scholar
  75. Peavler, W.S., & Nellis, M.J. (1976). Pupillary changes as a function of normal work activity. Paper presented at the annual meeting of the Canadian Psychological Association, Toronto.Google Scholar
  76. Peckham, A.D., & Johnson, S.L., (2016). Spontaneous eye-blink rate as an index of reward responsivity validation and links to bipolar disorder. Clinical Psychological Science, 4, 451-463.CrossRefPubMedGoogle Scholar
  77. Randall, J. G., Oswald, F. L., & Beier, M. E. (2014). Mind-wandering, cognition, and performance: A theory-driven meta-analysis of attention regulation. Psychological Bulletin, 140, 1411.CrossRefPubMedGoogle Scholar
  78. Redick, T. S. (2014). Cognitive control in context: Working memory capacity and proactive control. Acta Psychologica, 145, 1-9.CrossRefPubMedGoogle Scholar
  79. Redick, T.S., Broadway, J.M., Meier, M.E., Kuriakose, P.S., Unsworth, N., Kane, M.J., & Engle, R.W. (2012). Measuring working memory capacity with automated complex span tasks. European Journal of Psychological Assessment, 28, 164-171.CrossRefGoogle Scholar
  80. Reilly, J. Kelly, A., Kim, S.H., Jett, S., & Zuckerman, B. (in press). The human task-evoked pupillary response function is linear: Implications for baseline response scaling in pupillometry. Behavior Research Methods Google Scholar
  81. Reimer, J., McGinley, M.J., Liu, Y., Rodenkirch, C., Wang, Q., McCormick, D.A., & Tolias, A.S. (2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature Communications, 7, 13289.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Richmond, L., Redick, T. S., & Braver, T. (2015). Remembering to prepare: The benefits (and costs) associated with high working memory capacity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 1764-1777. PubMedGoogle Scholar
  83. Robbins, T.W., & Arnsten, A.F (2009). The neuropsychopharmacology of fronto-executive function: Monoaminergic modulation. Annual Review of Neuroscience, 32, 267-287.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Samuels, E.R., Szabadi, E. (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function. Part I: Principles of functional organization. Current Neuropharmacology, 6, 235–253.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Schneider, M., Hathway, P., Leuchs, L., Samann, P.G., Czisch, M., & Spoormaker, V.I. (2016). Spontaneous pupil dilations during the resting state are associated with activation of the salience network. NeuroImage, 139, 189-201.CrossRefPubMedGoogle Scholar
  86. Seli, P., Smallwood, J., Cheyne, J. A., & Smilek, D. (2015). On the relation of mind-wandering and ADHD symptomology. Psychonomic Bulletin & Review, 22, 629 – 636.CrossRefGoogle Scholar
  87. Servan-Schreiber D, Printz H, & Cohen JD (1990). A network model of catecholamine effects: Gain, signal-to-noise ratio, and behavior. Science. 249, 892-895.CrossRefPubMedGoogle Scholar
  88. Sescousse, G., Ligneul, R., van Holst, R.J., Janssen, L.K, de Boer, F., Janssen, M., Berry, A.S., Jagust, W.J., Cools, R. (2018). Spontaneous eye blink rate and dopamine synthesis capacity: Preliminary evidence for an absence of positive correlation. European Journal of Neuroscience, 47, 1081-1086.CrossRefPubMedGoogle Scholar
  89. Shirama, A., Kanai, C., Kato, N., & Kashino, M. (2016). Ocular fixation abnormality in patients with autism spectrum disorder. Journal of Autism and Developmental Disorders, 46, 1613-1622.CrossRefPubMedGoogle Scholar
  90. Simpson, H.M., & Molloy, F.M. (1971). Effects of audience anxiety on pupil size. Psychophysiology, 8, 491-496.CrossRefPubMedGoogle Scholar
  91. Smallwood J., Schooler J. W. (2015). The science of mind wandering: Empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487–518.CrossRefPubMedGoogle Scholar
  92. Smilek, D., Carriere, J.S.A., & Cheyene, J.A. (2010). Out of mind, out of sight: Eye blinking as indicator and embodiment of mind wandering. Psychological Science, 21, 786–789.CrossRefPubMedGoogle Scholar
  93. Smyrnis, N., Kattoulas, E., Evdokimidis, I., Stefanis, N.C., Avramopoulos, D., Pantes, G., Theleritis, C., Stefanis, C.N., (2004). Active eye fixation performance in 940 young men: Effects of IQ, schizotypy, anxiety and depression. Experimental Brain Research 156, 1–10.CrossRefPubMedGoogle Scholar
  94. Stelmack, R. M., & Mendelzys, N. (1975). Extraversion and pupillary response to affective and taboo words. Psychophysiology, 12, 536-540.CrossRefPubMedGoogle Scholar
  95. Szabadi, E. (2013). Functional neuroanatomy of the central noradrenergic system. Journal of Psychopharmacology, 27, 659-693.CrossRefPubMedGoogle Scholar
  96. Tharp, I.J., Pickering, A.D. (2011). Individual differences in cognitive-flexibility: The influence of spontaneous eyeblink rate, trait psychoticism and working memory on attentional set-shifting. Brain and Cognition, 75, 119–125.CrossRefPubMedGoogle Scholar
  97. Tryon, W.W. (1975). Pupillometry: A survey of sources of variation. Psychophysiology, 12, 90-93.CrossRefPubMedGoogle Scholar
  98. Tsukahara, J.S., Harrison, T.L., & Engle, R.W. (2016). The relationship between baseline pupil size and intelligence. Cognitive Psychology, 91, 109-123.CrossRefPubMedGoogle Scholar
  99. Unsworth, N., Heitz, R.P., Schrock, J.C., & Engle, R.W. (2005) An automated version of the operation span task. Behavior Research Methods, 37, 498-505.CrossRefPubMedGoogle Scholar
  100. Unsworth, N., & McMillan, B.D. (2014). Similarities and differences between mind-wandering and external distraction: A latent variable analysis of lapses of attention and their relation to cognitive abilities. Acta Psychologica, 150, 14-25.CrossRefPubMedGoogle Scholar
  101. Unsworth, N., Redick, T.S., Heitz, R.P., Broadway, J., & Engle, R.W. (2009). Complex working memory span tasks and higher-order cognition: A latent variable analysis of the relationship between processing and storage. Memory, 17, 635-654.CrossRefPubMedGoogle Scholar
  102. Unsworth, N. & Robison, M.K. (2015). Individual differences in the allocation of attention to items in working memory: Evidence from pupillometry. Psychonomic Bulletin & Review, 22, 757-765.CrossRefGoogle Scholar
  103. Unsworth, N. & Robison, M.K. (2016). Pupillary correlates of lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience 16, 601-615.CrossRefGoogle Scholar
  104. Unsworth, N., & Robison, M.K. (2017a). The importance of arousal for variation in working memory capacity and attention control: A latent variable pupillometry study. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43, 1962-1987.PubMedGoogle Scholar
  105. Unsworth, N., & Robison, M.K. (2017b). A Locus Coeruleus-Norepinephrine account of individual differences in working memory capacity and attention control. Psychonomic Bulletin & Review, 24, 1282-1311.CrossRefGoogle Scholar
  106. Unsworth, N., & Robison, M.K. (2018). Tracking mind-wandering and arousal state with pupillometry. Cognitive, Affective, & Behavioral Neuroscience, 18, 638-664.CrossRefGoogle Scholar
  107. Unsworth, N., Robison, M.K., & Miller, A.L., (2018). Pupillary correlates of fluctuations in sustained attention. Journal of Cognitive Neuroscience, 30, 1241-1253.CrossRefPubMedGoogle Scholar
  108. Unsworth, N., Schrock, J.C., & Engle, R.W. (2004) Working memory capacity and the antisaccade task: Individual differences in voluntary saccade control. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 1302-1321.PubMedGoogle Scholar
  109. Unsworth, N., & Spillers, G.J. (2010). Working memory capacity: Attention, Memory, or Both? A direct test of the dual-component model. Journal of Memory and Language, 62, 392-406.CrossRefGoogle Scholar
  110. van den Brink, R.L., Murphy, P.R., & Nieuwenhuis, S. (2016). Pupil diameter tracks lapses of attention. PLoS ONE 11: e0165274.CrossRefPubMedPubMedCentralGoogle Scholar
  111. van der Meer, E., Beyer, R., Horn, J., Foth, M., Bornemann, B., Ries, J., Kramer, J., Warmuth, E., Heekeren, H., & Wartenburger, I. (2010). Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiology, 47, 158-169.CrossRefPubMedGoogle Scholar
  112. Varazzani, C., San-Galli, A., Gilardeau, S., Bouret, S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: A direct electrophysiological comparison in behaving monkeys. Journal of Neuroscience, 35, 7866-77.CrossRefPubMedGoogle Scholar
  113. Westbrook A., & Braver T.S. (2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89, 695-710.CrossRefPubMedPubMedCentralGoogle Scholar
  114. Wilhelm, B., Giedke, H., Ludtke, H., Bittner, E., Hofmann, A. and Wilhelm, H. (2001). Daytime variations in central nervous system activation measured by a pupillographic sleepiness test. Journal of Sleep Research, 10, 1–7.CrossRefPubMedGoogle Scholar
  115. Winn, B., Whitaker, D., Elliott, D. B., & Phillips, N. J. (1994). Factors affecting light-adapted pupil size in normal human subjects. Investigative Ophthalmology & Visual Science, 35, 1132–1137.Google Scholar
  116. Yechiam, E., and Telpaz, A. (2011). To take risk is to face loss: A tonic pupillometry study. Frontiers in Psychology, 2, 344.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Yellin, D., Berkovich-Ohana, A., & Malach, R. (2015). Coupling between pupil fluctuations and resting-state fMRI uncovers a slow build-up of antagonistic responses in the human cortex. Neuroimage 106, 414–427.CrossRefPubMedGoogle Scholar
  118. Yoss, R.E., Moyer, N.Y. & Hollenhorst, R.W. (1970). Pupil Size and Spontaneous Pupillary Waves Associated with Alertness, Drowsiness, and Sleep. Neurology, 20, 545–554.Google Scholar
  119. Zhang, T., Mou, D., Wang, C., Tan, F., Jiang, Y., Lijun, Z., Li, H. (2015). Dopamine and executive function: Increased spontaneous eye blink rates correlate with better set-shifting and inhibition: But poorer updating. International Journal of Psychophysiology, 96, 155–161.CrossRefPubMedGoogle Scholar

Copyright information

© The Psychonomic Society, Inc. 2019

Authors and Affiliations

  • Nash Unsworth
    • 1
    Email author
  • Matthew K. Robison
    • 1
  • Ashley L. Miller
    • 1
  1. 1.Department of PsychologyUniversity of OregonEugeneUSA

Personalised recommendations