Advertisement

Cognitive, Affective, & Behavioral Neuroscience

, Volume 18, Issue 5, pp 925–931 | Cite as

The effects of expected reward on creative problem solving

  • Irene Cristofori
  • Carola Salvi
  • Mark Beeman
  • Jordan Grafman
Article

Abstract

Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.

Keywords

Subliminal Monetary rewards Insight Problem solving 

Notes

Acknowledgements

This work was supported by NIH under Grant No. T32 NS047987 to C.S., by the United States Air Force Research Laboratory FA8650-15-2-5518, and by the Therapeutic Cognitive Neuroscience Fund to J.G.

Author contributions

All authors have contributed significantly to the manuscript. I.C., C.S., M.B., and J.G. designed and performed research; I.C. and C.S. analyzed the data; I.C., C.S., M.B., and J.G. interpreted the data and wrote the paper.

References

  1. Amabile, T. M., Hennessey, B. A., & Grossman, B. S. (1986). Social influences on creativity: The effects of contracted-for reward. Journal of Personality and Social Psychology, 50(1), 14–23.CrossRefPubMedGoogle Scholar
  2. Benedek, M., Stoiser, R., Walcher, S., & Korner, C. (2017). Eye behavior associated with internally versus externally directed cognition. Frontiers in Psychology, 8, 1092.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bijleveld, E., Custers, R., & Aarts, H. (2010). Unconscious reward cues increase invested effort, but do not change speed-accuracy tradeoffs. Cognition, 115(2), 330–335.CrossRefPubMedGoogle Scholar
  4. Bijleveld, E., Custers, R., & Aarts, H. (2012). Adaptive reward pursuit: How effort requirements affect unconscious reward responses and conscious reward decisions. Journal of Experimental Psychology: General, 141(4), 728–742.CrossRefGoogle Scholar
  5. Bowden, E. M., & Jung-Beeman, M. (2003a). Aha! Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin & Review, 10(3), 730–737.CrossRefGoogle Scholar
  6. Bowden, E. M., & Jung-Beeman, M. (2003b). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35(4), 634–639.CrossRefGoogle Scholar
  7. Bustin, G. M., Quoidbach, J., Hansenne, M., & Capa, R. L. (2012). Personality modulation of (un)conscious processing: Novelty seeking and performance following supraliminal and subliminal reward cues. Consciousness and Cognition, 21(2), 947–952.CrossRefPubMedGoogle Scholar
  8. Capa, R. L., Bouquet, C. A., Dreher, J. C., & Dufour, A. (2013). Long-lasting effects of performance-contingent unconscious and conscious reward incentives during cued task-switching. Cortex, 49(7), 1943–1954.CrossRefPubMedGoogle Scholar
  9. Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458–465.CrossRefPubMedGoogle Scholar
  10. Colzato, L. S., van den Wildenberg, W. P., van Wouwe, N. C., Pannebakker, M. M., & Hommel, B. (2009). Dopamine and inhibitory action control: Evidence from spontaneous eye blink rates. Experimental Brain Research, 196(3), 467–474.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Colzato, L. S., van Wouwe, N. C., & Hommel, B. (2007). Spontaneous eyeblink rate predicts the strength of visuomotor binding. Neuropsychologia, 45(10), 2387–2392.CrossRefPubMedGoogle Scholar
  12. Csikszentmihalyi, M. (1984). Creativity: The social psychology of creativity. Science, 225(4665), 918–919.CrossRefPubMedGoogle Scholar
  13. D’Ardenne, K., McClure, S. M., Nystrom, L. E., & Cohen, J. D. (2008). BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science, 319(5867), 1264-1267.CrossRefPubMedGoogle Scholar
  14. de Manzano, O., Cervenka, S., Karabanov, A., Farde, L., & Ullen, F. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS One, 5(5), e10670.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dehaene, S., Changeux, J. P., Naccache, L., Sackur, J., & Sergent, C. (2006). Conscious, preconscious, and subliminal processing: A testable taxonomy. Trends in Cognitive Sciences, 10(5), 204–211.CrossRefPubMedGoogle Scholar
  16. Eysenck, H. J. (1993). Creativity and personality: Suggestions for a theory. Psychological Inquiry, 4, 147–178.CrossRefGoogle Scholar
  17. Flaherty, A. W. (2005). Frontotemporal and dopaminergic control of idea generation and creative drive. The Journal of Comparative Neurology, 493(1), 147–153.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hattori, M., Sloman, S. A., & Orita, R. (2013). Effects of subliminal hints on insight problem solving. Psychonomic Bulletin & Review, 20(4), 790-797.CrossRefGoogle Scholar
  19. Heilman, K. M. (2005). Creativity and the brain. New York, NY: Psychology Press.Google Scholar
  20. Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblatt, R., ... Kounios, J. (2004). Neural activity when people solve verbal problems with insight. PLOS Biology, 2(4), E97.Google Scholar
  21. Karson, C. N. (1983). Spontaneous eye-blink rates and dopaminergic systems. Brain, 106(Pt. 3), 643–653.CrossRefPubMedGoogle Scholar
  22. Kleven, M. S., & Koek, W. (1996). Differential effects of direct and indirect dopamine agonists on eye blink rate in cynomolgus monkeys. Journal of Pharmacology and Experimental Therapeutics, 279(3), 1211–1219.PubMedGoogle Scholar
  23. Kouider, S., & Dehaene, S. (2007). Levels of processing during non-conscious perception: A critical review of visual masking. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 857–875.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kounios, J., & Beeman, M. (2014). The cognitive neuroscience of insight. Annual Review of Psychology, 65, 71–93.CrossRefPubMedGoogle Scholar
  25. Kounios, J., Fleck, J. I., Green, D. L., Payne, L., Stevenson, J. L., Bowden, E. M., & Jung-Beeman, M. (2008). The origins of insight in resting-state brain activity. Neuropsychologia, 46(1), 281–291.CrossRefPubMedGoogle Scholar
  26. Kounios, J., Frymiare, J. L., Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., & Jung-Beeman, M. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, 17(10), 882–890.CrossRefPubMedGoogle Scholar
  27. Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22(3), 607–615.CrossRefPubMedGoogle Scholar
  28. Maier, N. R. F. (1931). Reasoning in humans: II. The solution of a problem and its appearance in consciousness. Journal of Comparative Psychology, 12(2), 181–194.CrossRefGoogle Scholar
  29. McGraw, K. O. (1978). The detrimental effects of reward on performance: A literature review and a prediction model. Hillsdale, N J: Erlbaum.Google Scholar
  30. Morris, J. S., Ohman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393(6684), 467–470.CrossRefPubMedGoogle Scholar
  31. Nakano, T. (2015). Blink-related dynamic switching between internal and external orienting networks while viewing videos. Journal of Neuroscience Research, 96, 54–58.CrossRefGoogle Scholar
  32. Pas, P., Custers, R., Bijleveld, E., & Vink, M. (2014). Effort responses to suboptimal reward cues are related to striatal dopaminergic functioning. Motivation and Emotion, 38(6), 759–770.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pessiglione, M., Petrovic, P., Daunizeau, J., Palminteri, S., Dolan, R. J., & Frith, C. D. (2008). Subliminal instrumental conditioning demonstrated in the human brain. Neuron, 59(4), 561–567.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pessiglione, M., Schmidt, L., Draganski, B., Kalisch, R., Lau, H., Dolan, R. J., & Frith, C. D. (2007). How the brain translates money into force: A neuroimaging study of subliminal motivation. Science, 316(5826), 904–906.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate genes for creativity: A pilot study. Brain Research, 1069(1), 190–197.CrossRefPubMedGoogle Scholar
  36. Rowe, G., Hirsh, J. B., & Anderson, A. K. (2007). Positive affect increases the breadth of attentional selection. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 383–388.CrossRefPubMedGoogle Scholar
  37. Salvi, C., Bricolo, E., Franconeri, S. L., Kounios, J., & Beeman, M. (2015). Sudden insight is associated with shutting out visual inputs. Psychonomic Bulletin & Review, 1–6.  https://doi.org/10.3758/s13423-015-0845-0
  38. Salvi, C., Bricolo, E., Kounios, J., Bowden, E., & Beeman, M. (2016). Aha is right: Insight solutions are more often correct than analytic solutions. The Quarterly Journal of Experimental Psychology 69(6), 1064–1072.CrossRefPubMedGoogle Scholar
  39. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User’s guide. Pittsburgh, PA: Psychology Software Incorporated.Google Scholar
  40. Schunn, C. D., & Dunbar, K. (1996). Priming, analogy, and awareness in complex reasoning. Memory & Cognition, 24(3), 271–284.CrossRefGoogle Scholar
  41. Subramaniam, K., Kounios, J., Parrish, T. B., & Jung-Beeman, M. (2009). A brain mechanism for facilitation of insight by positive affect. Journal of Cognitive Neuroscience, 21(3), 415–432.CrossRefPubMedGoogle Scholar
  42. Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). Regional gray matter volume of dopaminergic system associated with creativity: Evidence from voxel-based morphometry. NeuroImage, 51(2), 578–585.CrossRefPubMedGoogle Scholar
  43. Taylor, J. R., Elsworth, J. D., Lawrence, M. S., Sladek, J. R., Jr., Roth, R. H., & Redmond, D. E., Jr. (1999). Spontaneous blink rates correlate with dopamine levels in the caudate nucleus of MPTP-treated monkeys. Experimental Neurology, 158(1), 214–220.CrossRefPubMedGoogle Scholar
  44. Ueda, Y., Tominaga, A., Kajimura, S., & Nomura, M. (2015). Spontaneous eye blinks during creative task correlate with divergent processing. Psychological Research, 80(4), 652–9.  https://doi.org/10.1007/s00426-015-0665-x CrossRefPubMedGoogle Scholar
  45. Walcher, S., Korner, C., & Benedek, M. (2017). Looking for ideas: Eye behavior during goal-directed internally focused cognition. Consciousness and Cognition, 53, 165–175.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Wegbreit, E., Suzuki, S., Grabowecky, M., Kounios, J., & Beeman, M. (2012). Visual attention modulates insight versus analytic solving of verbal problems. The Journal of Problem Solving, 4(2), 94–115.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Duzel, E. (2005). Reward-related FMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45(3), 459–467.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Irene Cristofori
    • 1
    • 2
  • Carola Salvi
    • 2
    • 3
  • Mark Beeman
    • 3
  • Jordan Grafman
    • 1
    • 2
    • 4
  1. 1.Department of Physical Medicine and Rehabilitation, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Cognitive Neuroscience LaboratoryShirley Ryan AbilityLabChicagoUSA
  3. 3.Department of PsychologyNorthwestern UniversityChicagoUSA
  4. 4.Department of Neurology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations