Tracking arousal state and mind wandering with pupillometry

  • Nash Unsworth
  • Matthew K. Robison


In four experiments, the association between arousal state and different mind-wandering states was examined. Participants performed a sustained attention task while pupil responses were continuously recorded. Periodically during the task, participants were presented with thought probes to determine if they were on task or mind wandering. Across the four experiments, the results suggested that in situations that promoted on-task behaviors and focused external attention, mind wandering was associated with lowered arousal, as seen by smaller tonic pupil diameters and smaller phasic pupillary responses. However, in situations that promoted a more internal focus of attention, there were no differences between on-task states and mind wandering in tonic pupil diameter (although differences emerged for phasic pupillary responses), suggesting similar arousal levels. Furthermore, across the four experiments, mind blanking and mind wandering dissociated in terms of whether the situation promoted focused external attention or focused internal attention. These results are broadly consistent with the notion that mind wandering is a heterogeneous construct, with different forms of mind wandering being associated with different arousal states, and suggest that a combination of behavioral and pupillary measures can be used to track these various states.


Attention Cognitive control Norephinephrine 


  1. Alnæs, D., Sneve, M. H., Espeseth, T., Endestad, T., van de Pavert, S. H. P., & Laeng, B. (2014). Pupil size signals mental effort deployed during multiple object tracking and predicts rain activity in the dorsal attention network and the locus coeruleus. Journal of Vision, 14, 1–20.CrossRefPubMedGoogle Scholar
  2. Andrews-Hanna, J. R., Kaiser, R. H., Turner, A. E. J., Reineberg, A. E., Godinez, D., Dimidjian, S., & Banich, M. T. (2013). A penny for your thoughts: Dimensions of self-generated thought content and relationships with individual differences in emotional wellbeing. Frontiers in Psychology, 4, 900. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antrobus, J. S. (1968). Information theory and stimulus-independent thought. British Journal of Psychology, 59, 423–430.CrossRefGoogle Scholar
  4. Antrobus, J. S., Singer, J. L., & Greenberg, S. (1966). Studies in the stream of consciousness: Experimental enhancement and suppression of spontaneous cognitive processes. Perceptual and Motor Skills, 23, 399–417.CrossRefGoogle Scholar
  5. Arnsten, A. F., & Goldan-Rakic, P. S. (1984). Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Research, 306, 9–18.CrossRefPubMedGoogle Scholar
  6. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.CrossRefPubMedGoogle Scholar
  7. Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91, 276–292.CrossRefPubMedGoogle Scholar
  8. Beatty, J., & Lucero-Wagoner, B. (2000). The pupillary system. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 142–162). New York: Cambridge University Press.Google Scholar
  9. Berridge, C. W., & Waterhouse, B. D. (2003) The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42, 33–84.CrossRefPubMedGoogle Scholar
  10. Chamberlain, S. R., & Robbins, T. W. (2013). Noradrenergic modulation of cognition: Therapeutic implications. Journal of Psychopharmacology, 27, 694–718.CrossRefPubMedGoogle Scholar
  11. De Jong, R., Berendsen, E., & Cools, R. (1999). Goal neglect and inhibitory limitations: Dissociable causes of interference effects in conflict situations. Acta Psychologica, 101, 379–394.CrossRefPubMedGoogle Scholar
  12. Dinges, D. F., & Powell, J. W. (1985). Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behavior Research Methods, Instruments, & Computers, 17, 652–655.CrossRefGoogle Scholar
  13. Eldar, E., Cohen, J. D., & Niv, Y. (2013). The effects of neural gain on attention and learning. Nature Neuroscience, 16, 1146–1153.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Eldar, E., Niv, Y., & Cohen, J. D. (2016). Do you see the forest or the trees? Neural gain and integration during perceptual processing. Psychological Science, 27, 1632–1643.CrossRefPubMedGoogle Scholar
  15. Franklin, M. S., Broadway, J. M., Mrazek, M. D., Smallwood, J., & Schooler, J. W. (2013). Window to the wandering mind: Pupillometry of spontaneous thought while reading. The Quarterly Journal of Experimental Psychology, 1–15. doi:10.1080/17470218.2013.858170.Google Scholar
  16. Franklin, M. S., Mrazek, M. D., Anderson, C. L., Johnston, C., Smallwood, J., Kingstone, A., & Schooler, J. W. (2014). Tracking distraction: The relationship between mind-wandering, meta-awareness, and ADHD symptomology. Journal of Attention Disorders. doi:
  17. Giambra, L. M. (1995). A laboratory method for investigating influences on switching attention to task-unrelated imagery and thought. Consciousness and Cognition, 4(1), 1–21.CrossRefPubMedGoogle Scholar
  18. Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10, 252–269.CrossRefGoogle Scholar
  19. Grandchamp, R., Braboszcz, C., & Delorme, A. (2014). Occulometric variations during mind wandering. Frontiers in Psychology, 5, 31. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grodsky, A., & Giambra, L. M. (1990–1991). The consistency across vigilance and reading tasks of individual differences in the occurrence of task-unrelated and task-related images and thoughts. Imagination, Cognition and Personality, 10, 39–52.Google Scholar
  21. Horowitz, M. J. (1975). Intrusive and repetitive thoughts after experimental stress. Archive of General Psychiatry, 32, 1457–1463.CrossRefGoogle Scholar
  22. Jennings, J. R., & van der Molen, M. W. (2005). Preparation for speeded action as a psychophysiological concept. Psychological Bulletin, 131, 434–459.CrossRefPubMedGoogle Scholar
  23. Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23, 1587–1596.CrossRefPubMedGoogle Scholar
  24. Jodo, E., Chiang, C., & Aston-Jones, G. (1998). Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience, 83, 63–79.CrossRefPubMedGoogle Scholar
  25. Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationship between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89, 221–234.CrossRefPubMedGoogle Scholar
  26. Kahneman, D. (1973). Attention and effort. Upper Saddle River: Prentice Hall.Google Scholar
  27. Kane, M. J., Brown, L. E., Little, J. C., Silvia, P. J., Myin-Germeys, I., & Kwapil, T. R. (2007). For whom the mind wanders, and when: An experience-sampling study of working memory and executive control in daily life. Psychological Science, 18, 614–621.CrossRefPubMedGoogle Scholar
  28. Kane, M. J., Meier, M. E., Smeekens, B. A., Gross, G. M., Chun, C. A., Silvia, P. J., & Kwapil, T. R. (2016). Individual differences in the executive control of attention, memory, and thought, and their associations with schizotypy. Journal of Experimental Psychology: General, 145, 1017–1048.CrossRefGoogle Scholar
  29. Killingsworth, M. A., & Gilbert, D. T. (2010). A wandering mind is an unhappy mind. Science, 330, 932. doi: CrossRefPubMedGoogle Scholar
  30. Kirschbaum, C., Pirke, K. M., & Helhammer, D. H. (1993). The ‘Trier Social Stress Test’—A tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 76–81.CrossRefPubMedGoogle Scholar
  31. Klinger, E. (1999). Thought flow: Properties and mechanisms underlying shifts in content. In J. A. Singer & P. Salovey (Eds.), At play in the fields of consciousness: Essays in honor of Jerome L. Singer (pp. 29–50). Mahwah: Erlbaum.Google Scholar
  32. Klinger, E. (2009). Daydreaming and fantasizing: Thought flow and motivation. In K. D. Markman, W. M. P. Klein, & J. A. Suhr (Eds.), Handbook of imagination and mental stimulation (pp. 225–239). New York: Psychology Press.Google Scholar
  33. Konishi, M., Brown, K., Battaglini, L. & Smallwood, J. (2017). When attention wanders: Pupillometric signatures of fluctuations in external attention. Cognition, 168, 16–26.CrossRefPubMedGoogle Scholar
  34. Konishi, M., & Smallwood, J. (2016). Shadowing the wandering mind: How understanding the mind-wandering state can inform our appreciation of conscious experience. WIREs Cognitive Science, 7, 233–246CrossRefPubMedGoogle Scholar
  35. Langner, R., & Eickhoff, S. B. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139, 870–900.CrossRefPubMedGoogle Scholar
  36. Lenartowicz, A., Simpson, G. V., & Cohen, M. S., (2013). Perspective: Causes and functional significance of temporal variations in attention control. Frontiers in Human Neuroscience, 7, 381. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  37. McGinley, M. J., David, S. V., & McCormick, D. A. (2015). Cortical membrane potential signature of optimal states for sensory signal detection. Neuron, 87, 179–192.CrossRefPubMedPubMedCentralGoogle Scholar
  38. McVay, J. C., & Kane, M. J. (2010). Does mind wandering reflect executive function or executive failure? Comment on Smallwood and Schooler (2006) and Watkins (2008). Psychological Bulletin, 136, 188–197.CrossRefPubMedPubMedCentralGoogle Scholar
  39. McVay, J. C., & Kane, M. J. (2012). Why does working memory capacity predict variation in reading comprehension? On the influence of mind wandering and executive attention. Journal of Experimental Psychology: General, 141, 302–320.CrossRefGoogle Scholar
  40. Mittner, M., Boekel, W., Tucker, A., Turner, B. M., Heathcote, A., & Forstmann, B. U. (2014). When the brain takes a break: A model-based analysis of mind wandering. The Journal of Neuroscience, 34, 16286–16295.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mittner, M., Hawkins, G., Boekel, W. & Forstmann, B. (2016). A neural model of mind wandering. Trends in Cognitive Sciences, 20, 570–578.CrossRefPubMedGoogle Scholar
  42. Mrazek, M. D., Smallwood, J., Franklin, M. S., Chin, J. M., Baird, B., & Schooler, J. W. (2012). The role of mind-wandering in measurements of general aptitude. Journal of Experimental Psychology: General, 788–798.Google Scholar
  43. Murphy P. R., O’Connell, R. G., O’Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with BOLD activity in human locus coeruleus. Human Brain Mapping 35, 4140–4154.CrossRefPubMedGoogle Scholar
  44. Murphy, P. R., Robertson, I. H., Balsters, J. H., & O’Connell, R. G. (2011). Pupillometry and P3 index the locus coeruleus-noradrenergic arousal function in humans. Psychophysiology, 48, 1532–1543.CrossRefPubMedGoogle Scholar
  45. Nieuwenhuis, S., de Geus, E. J., & Aston-Jones, G. (2011). The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology, 48, 162–175.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rajkowski, J., Lu, W., Zhu, Y., Cohen, J. D., & Aston-Jones, G. (2000). Prominent projections from the anterior cingulate cortex to the locus coeruleus (LC) in rhesus monkey. Society for Neuroscience Abstracts, 26, 2230.Google Scholar
  47. Ramos, B. P., & Arnsten, A. F. (2007). Adrenergic pharmacology and cognition: Focus on the prefrontal cortex. Pharmacology & Therapeutics, 113, 523–536.CrossRefGoogle Scholar
  48. Reason, J. T. (1990). Human error. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  49. Reimer, J., McGinley, M. J., Liu, Y., Rodenkirch, C., Wang, Q., McCormick, D. A., & Tolias, A. S. (2016). Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nature Communications, 7, 13289. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  50. Robison, M. K., Gath, K. I., & Unsworth, N. (2017). The neurotic wandering mind: An individual differences investigation of mind-wandering, neuroticism, and executive control. The Quarterly Journal of Experimental Psychology, 70, 649–663.CrossRefPubMedGoogle Scholar
  51. Samuels, E. R., & Szabadi, E. (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function. Part I: Principles of functional organization. Current Neuropharmacology, 6, 235–253.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Seli, P., Cheyne, J. A., Xu, M., Purdon, C., & Smilek, D. (2015). Motivation, intentionality, and mind wandering: Implications for assessments of task-unrelated thought. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 1417–1425.PubMedGoogle Scholar
  53. Seli, P., Risko, E. F., & Smilek, D. (2016). On the necessity of distinguishing between unintentional and intentional mind wandering. Psychological Science, 27, 685–691.CrossRefPubMedGoogle Scholar
  54. Seli, P., Risko, E. F., Smilek, D., & Schacter, D. L. (2016). Mind-wandering with and without intention. Trends in Cognitive Sciences, 20, 605–617.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Seli, P., Smallwood, J., Cheyne, J. A., & Smilek, D. (2015). On the relation of mind-wandering and ADHD symptomology. Psychonomic Bulletin & Review, 22, 629–636.CrossRefGoogle Scholar
  56. Shaw, T., Finomore, V., Warm, J., & Matthews, G. (2012). Effects of regular and irregular event schedules on cerebral hemovelocity during a sustained attention task. Journal of Clinical and Experimental Neuropsychology, 34, 57–66.CrossRefPubMedGoogle Scholar
  57. Smallwood, J., & Schooler, J. W. (2006). The restless mind. Psychological Bulletin, 132, 946–958.CrossRefPubMedGoogle Scholar
  58. Smallwood, J., & Schooler, J. W. (2015). The science of mind wandering: Empirically navigating the stream of consciousness. Annual Review of Psychology, 66, 487–518.CrossRefPubMedGoogle Scholar
  59. Stawarczyk, D., & D’Argembeau, A. (2016). Conjoint influence of mind-wandering and sleepiness on task performance. Journal of Experimental Psychology: Human Perception and Performance, 42, 1587–1600.PubMedGoogle Scholar
  60. Stawarczyk, D., Majerus, S., Maj, M., Van der Linden, M., & D’Argembeau, A. (2011). Mind- wandering: Phenomenology and function as assessed with a novel experience sampling method. Acta Psychologica, 136, 370–381.CrossRefPubMedGoogle Scholar
  61. Szabadi, E. (2013). Functional neuroanatomy of the central noradrenergic system. Journal of Psychopharmacology, 27, 659–693.CrossRefPubMedGoogle Scholar
  62. Thomson, D. R., Seli, P., Besner, D., & Smilek, D. (2014). On the link between mind wandering and task performance over time. Consciousness and Cognition, 27, 14–26.CrossRefPubMedGoogle Scholar
  63. Unsworth, N., & McMillan, B. D. (2013). Mind wandering and reading comprehension: Examining the roles of working memory capacity, interest, motivation, and topic experience. Journal of Experimental Psychology: Learning, Memory, & Cognition, 39, 832–842.Google Scholar
  64. Unsworth, N., & McMillan, B. D. (2014). Similarities and differences between mind-wandering and external distraction: A latent variable analysis of lapses of attention and their relation to cognitive abilities. Acta Psychologica, 150, 14–25.CrossRefPubMedGoogle Scholar
  65. Unsworth, N., & Robison, M. K. (2016a). Pupillary correlates of lapses of sustained attention. Cognitive, Affective, & Behavioral Neuroscience, 16, 601–615.CrossRefGoogle Scholar
  66. Unsworth, N., & Robison, M. K. (2016b). The influence of lapses of attention on working memory capacity. Memory & Cognition, 44, 188–196.CrossRefGoogle Scholar
  67. Unsworth, N., & Robison, M. K. (2017). The importance of arousal for variation in working memory capacity and attention control: A latent variable pupillometry study. Journal of Experimental Psychology: Learning, Memory, & Cognition, 43, 1962–1987.Google Scholar
  68. van den Brink, R. L., Murphy, P. R., & Nieuwenhuis, S. (2016). Pupil diameter tracks lapses of attention. PLOS ONE, 11, e0165274.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Varazzani, C., San-Galli, A., Dilardeau, S., & Bouret, S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: A direct electrophysiological comparison in behaving monkeys. Journal of Neuroscience, 35, 7866–7877.CrossRefPubMedGoogle Scholar
  70. Ward, A. F., & Wegner, D. M. (2013). Mind-blanking: When the mind goes away. Frontiers in Psychology, 4, 650.PubMedPubMedCentralGoogle Scholar
  71. Woodrow, H. (1914). The measurement of attention. Psychological Monographs, 17, 1–158.CrossRefGoogle Scholar
  72. Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit- formation. Journal of Comparative Neurology and Psychology, 18, 459–482.CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of OregonEugeneUSA

Personalised recommendations