Psychopathic traits associated with abnormal hemodynamic activity in salience and default mode networks during auditory oddball task

  • Nathaniel E. Anderson
  • J. Michael Maurer
  • Vaughn R. Steele
  • Kent A. Kiehl


Psychopathy is a personality disorder accompanied by abnormalities in emotional processing and attention. Recent theoretical applications of network-based models of cognition have been used to explain the diverse range of abnormalities apparent in psychopathy. Still, the physiological basis for these abnormalities is not well understood. A significant body of work has examined psychopathy-related abnormalities in simple attention-based tasks, but these studies have largely been performed using electrocortical measures, such as event-related potentials (ERPs), and they often have been carried out among individuals with low levels of psychopathic traits. In this study, we examined neural activity during an auditory oddball task using functional magnetic resonance imaging (fMRI) during a simple auditory target detection (oddball) task among 168 incarcerated adult males, with psychopathic traits assessed via the Hare Psychopathy Checklist-Revised (PCL-R). Event-related contrasts demonstrated that the largest psychopathy-related effects were apparent between the frequent standard stimulus condition and a task-off, implicit baseline. Negative correlations with interpersonal-affective dimensions (Factor 1) of the PCL-R were apparent in regions comprising default mode and salience networks. These findings support models of psychopathy describing impaired integration across functional networks. They additionally corroborate reports which have implicated failures of efficient transition between default mode and task-positive networks. Finally, they demonstrate a neurophysiological basis for abnormal mobilization of attention and reduced engagement with stimuli that have little motivational significance among those with high psychopathic traits.


Psychopathy Attention Oddball fMRI Salience Network Default Mode Network 



The authors thank Keith Harenski and Prashanth Nyalakanti for their assistance in data analysis. They also thank the Mind Research Network and the New Mexico Department of Corrections for their cooperative efforts. This research was supported in part by the National Institute of Mental Health R01MH070539 (PI: Kiehl) and F32MH098532 (PI: Anderson).

Supplementary material

13415_2018_588_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1524 kb)


  1. Anderson, N. E., & Kiehl, K. A. (2012). The psychopath magnetized: insights from brain imaging. Trends in cognitive sciences, 16(1), 52-60. CrossRefPubMedGoogle Scholar
  2. Anderson, N. E., & Stanford, M. S. (2012). Demonstrating emotional processing differences in psychopathy using affective ERP modulation. Psychophysiology, 49(6), 792-806. CrossRefPubMedGoogle Scholar
  3. Anderson, N. E., Steele, V. R., Maurer, J. M., Bernat, E. M., & Kiehl, K. A. (2015). Psychopathy, attention, and oddball target detection: New insights from PCL-R facet scores. Psychophysiology, 52(9), 1194-1204. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anderson, N. E., Steele, V. R., Maurer, J. M., Rao, V., Koenigs, M. R., Decety, J., … Kiehl, K. A. (2017). Differentiating emotional processing and attention in psychopathy with functional neuroimaging. Cognitive, Affective, & Behavioral Neuroscience, 17(3), 491-515. CrossRefGoogle Scholar
  5. Arnett, P. A., Smith, S. S., & Newman, J. P. (1997). Approach and avoidance motivation in psychopathic criminal offenders during passive avoidance. Journal of personality and social psychology, 72(6), 1413. CrossRefPubMedGoogle Scholar
  6. Baskin-Sommers, A., Curtin, J. J., Li, W., & Newman, J. P. (2012). Psychopathy-related differences in selective attention are captured by an early event-related potential. Personality Disorders: Theory, Research, and Treatment, 3(4), 370-378. CrossRefGoogle Scholar
  7. Baskin-Sommers, A. R., Curtin, J. J., & Newman, J. P. (2011). Specifying the attentional selection that moderates the fearlessness of psychopathic offenders. Psychological Science, 22(2), 226-234. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baskin-Sommers, A. R., Curtin, J. J., & Newman, J. P. (2013). Emotion-modulated startle in psychopathy: Clarifying familiar effects. Journal of Abnormal Psychology, 122(2), 458-468. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Birbaumer, N., Veit, R., Lotze, M., Erb, M., Hermann, C., Grodd, W., & Flor, H. (2005). Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Archives of General Psychiatry, 62(7), 799-805. CrossRefPubMedGoogle Scholar
  10. Blair, R. J. R. (2005). Applying a cognitive neuroscience perspective to the disorder of psychopathy. Development and psychopathology, 17(03), 865-891. CrossRefPubMedGoogle Scholar
  11. Blair, R. J. R. (2007). The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends in cognitive sciences, 11(9), 387-392. CrossRefPubMedGoogle Scholar
  12. Blair, R. J. R., Peschardt, K. S., Budhani, S., Mitchell, D. G. V., & Pine, D. S. (2006). The development of psychopathy. Journal of Child Psychology and Psychiatry, 47(3-4), 262-276. CrossRefPubMedGoogle Scholar
  13. Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., & Sharp, D. J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences, 109(12), 4690-4695. CrossRefGoogle Scholar
  14. Calhoun, V. D., Adali, T., Pearlson, G. D., & Kiehl, K. A. (2006). Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data. Neuroimage, 30(2), 544-553. CrossRefPubMedGoogle Scholar
  15. Calhoun, V. D., Kiehl, K. A., & Pearlson, G. D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828-838. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Calhoun, V. D., Stevens, M. C., Pearlson, G. D., & Kiehl, K. A. (2004). fMRI analysis with the general linear model: removal of latency-induced amplitude bias by incorporation of hemodynamic derivative terms. Neuroimage, 22(1), 252-257. CrossRefPubMedGoogle Scholar
  17. Carlson, S. R. & Thái, S. (2010). ERPs on a continuous performance task and self-reported psychopathic traits: P3 and CNV augmentation are associated with Fearless Dominance. Biological Psychology, 85(2), 318-330. CrossRefPubMedGoogle Scholar
  18. Carlson, S. R., Thái, S., & McLarnon, M. E. (2009). Visual P3 amplitude and self-reported psychopathic personality traits: Frontal reduction is associated with self-centered impulsivity. Psychophysiology, 46(1), 100-113. CrossRefPubMedGoogle Scholar
  19. Chiong, W., Wilson, S. M., D’Esposito, M., Kayser, A. S., Grossman, S. N., Poorzand, P., … Rankin, K. P. (2013). The salience network causally influences default mode network activity during moral reasoning. Brain, 136(6), 1929-1941. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cleckley, H. (1941). The Mask of Sanity. St. Louis, MO: Mosby.Google Scholar
  21. Cocchi, L., Zalesky, A., Fornito, A., & Mattingley, J. B. (2013). Dynamic cooperation and competition between brain systems during cognitive control. Trends in Cognitive Sciences, 17, 493–501. CrossRefPubMedGoogle Scholar
  22. Cope, L. M., Vincent, G. M., Jobelius, J. L., Nyalakanti, P. K., Calhoun, V. D., & Kiehl, K. A. (2014). Psychopathic traits modulate brain responses to drug cues in incarcerated offenders. Frontiers in Human Neuroscience, 8, 1-16 CrossRefGoogle Scholar
  23. DeMatteo, D., Heilbrun, K., & Marczyk, G. (2006). An empirical investigation of psychopathy in a noninstitutionalized and noncriminal sample. Behavioral Sciences & the Law, 24(2), 133-146. CrossRefGoogle Scholar
  24. Ermer, E., Cope, L. M., Nyalakanti, P. K., Calhoun, V. D., & Kiehl, K. A. (2012). Aberrant paralimbic graymatter in criminal psychopathy. Journal of Abnormal Psychology, 121(3), 649–658.
  25. Fichtenholtz, H. M., Dean, H. L., Dillon, D. G., Yamasaki, H., McCarthy, G., & LaBar, K. S. (2004). Emotion–attention network interactions during a visual oddball task. Cognitive Brain Research, 20(1), 67-80. CrossRefPubMedGoogle Scholar
  26. First, M.B., Spitzer, R.L., Gibbon, M., Williams, J.B.W. (2002). Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCID-I/P). New York, NY: Biometrics Research, New York State Psychiatric Institute.Google Scholar
  27. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673-9678. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Freeman, S. M., Clewett, D. V., Bennett, C. M., Kiehl, K. A., Gazzaniga, M. S., & Miller, M. B. (2015). The posteromedial region of the default mode network shows attenuated task-induced deactivation in psychopathic prisoners. Neuropsychology, 29(3), 493. CrossRefPubMedGoogle Scholar
  29. Freire, L., Mangin, J.F., 2001. Motion correction algorithms may create spurious brain activations in the absence of subject motion. NeuroImage 14 (3), 709 – 722. CrossRefPubMedGoogle Scholar
  30. Freire, L., Roche, A., & Mangin, J. F. (2002). What is the best similarity measure for motion correction in fMRI time series?. IEEE transactions on medical imaging, 21(5), 470-484. CrossRefPubMedGoogle Scholar
  31. Frick, P. J., & White, S. F. (2008). Research review: The importance of callous-unemotional traits for developmental models of aggressive and antisocial behavior. Journal of Child Psychology and Psychiatry, 49(4), 359-375. CrossRefPubMedGoogle Scholar
  32. Friston, K., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., & Frackowiak, R. S. (1995). Spatial registration and normalization of images. Human brain mapping, 3(3), 165-189. CrossRefGoogle Scholar
  33. Gao, Y., & Raine, A. (2009). P3 event-related potential impairments in antisocial and psychopathic individuals: A meta-analysis. Biological Psychology, 82(3), 199-210.CrossRefPubMedGoogle Scholar
  34. Gao, Y., & Raine, A. (2010). Successful and unsuccessful psychopaths: A neurobiological model. Behavioral sciences & the law, 28(2), 194-210. Google Scholar
  35. García-Larrea, L., & Cézanne-Bert, G. (1998). P3, positive slow wave and working memory load: a study on the functional correlates of slow wave activity. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 108(3), 260-273. CrossRefGoogle Scholar
  36. Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4), 870-878. CrossRefPubMedGoogle Scholar
  37. Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. Neuroimage, 99, 180-190. CrossRefPubMedGoogle Scholar
  38. Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., … Vanrumste, B. (2008). Review on solving the inverse problem in EEG source analysis. Journal of Neuroengineering and Rehabilitation, 5(1), 25. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253-258. CrossRefGoogle Scholar
  40. Halgren, E., Marinkovic, K., & Chauvel, P. (1998). Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalography and Clinical Neurophysiology, 106 (2), 156–164. CrossRefPubMedGoogle Scholar
  41. Ham, T., Leff, A., de Boissezon, X., Joffe, A., & Sharp, D. J. (2013). Cognitive control and the salience network: an investigation of error processing and effective connectivity. Journal of Neuroscience, 33(16), 7091-7098. CrossRefPubMedGoogle Scholar
  42. Hamilton, R. K., Hiatt Racer, K., & Newman, J. P. (2015). Impaired integration in psychopathy: A unified theory of psychopathic dysfunction. Psychological review, 122(4), 770. CrossRefPubMedGoogle Scholar
  43. Hare R. D. (2003). Manual for the Hare Psychopathy Checklist-Revised (Multi-Health Systems, Toronto, Canada), 3rd Ed.Google Scholar
  44. Hare, R. D. & Neumann, C. S. (2005). Structural models of psychopathy. Current Psychiatry Reports, 7(1), 57-64. CrossRefPubMedGoogle Scholar
  45. Hare, R. D., & Neumann, C. S. (2006). The PCL-R assessment of psychopathy: Development, structural properties and new directions. In C.J. Patrick (Ed.), Handbook of Psychopathy (pp. 58-88). New York: Guilford.Google Scholar
  46. Herrmann, C. S. & Knight, R. T. (2001). Mechanisms of human attention: Event-related potentials and oscillations. Neuroscience & Biobehavioral Reviews, 25, 465-476. CrossRefGoogle Scholar
  47. Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M., … Sharp, D. J. (2014). Damage to the salience network and interactions with the default mode network. Journal of neuroscience, 34(33), 10798-10807. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Juárez, M., Kiehl, K. A., & Calhoun, V. D. (2013). Intrinsic limbic and paralimbic networks are associated with criminal psychopathy. Human Brain Mapping, 34(8), 1921-1930. CrossRefPubMedGoogle Scholar
  49. Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction. Psychiatry Research, 142(2), 107-128. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kiehl, K. A., & Liddle, P. F. (2001). An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia. Schizophrenia Research, 48(2), 159-171. CrossRefPubMedGoogle Scholar
  51. Kiehl, K. A., Smith, A. M., Hare, R. D., Mendrek, A., Forster, B. B., Brink, J., & Liddle, P. F. (2001). Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biological psychiatry, 50(9), 677-684. CrossRefPubMedGoogle Scholar
  52. Kiehl, K. A., Stevens, M. C., Laurens, K. R., Pearlson, G., Calhoun, V. D., & Liddle, P. F. (2005). An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n= 100) fMRI study of an auditory oddball task. Neuroimage, 25(3), 899-915. CrossRefPubMedGoogle Scholar
  53. Kim, H. (2013). Differential neural activity in the recognition of old versus new events: An Activation Likelihood Estimation Meta-Analysis. Human Brain Mapping, 34(4), 814-836. CrossRefPubMedGoogle Scholar
  54. Lane, R. D., Reiman, E. M., Axelrod, B., Yun, L. S., Holmes, A., & Schwartz, G. E. (1998). Neural correlates of levels of emotional awareness: Evidence of an interaction between emotion and attention in the anterior cingulate cortex. Journal of Cognitive Neuroscience, 10(4), 525-535. CrossRefPubMedGoogle Scholar
  55. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19(3), 1233-1239. CrossRefPubMedGoogle Scholar
  56. Maurer, J. M., Steele, V. R., Cope, L. M., Vincent, G. M., Stephen, J. M., Calhoun, V. D., & Kiehl, K. A. (2016). Dysfunctional error-related processing in incarcerated youth with elevated psychopathic traits. Developmental cognitive neuroscience, 19, 70-77. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Maurer, J. M., Steele, V. R., Edwards, B. G., Bernat, E. M., Calhoun, V. D., Kiehl, K. A. (2015). Dysfunctional error-related processing in female psychopathy. Social cognitive and affective neuroscience, 11(7), 1059-1068. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mazaika, P., Whitfield-Gabrieli, S., Reiss, A., & Glover, G. (2007). Artifact repair for fMRI data from high motion clinical subjects. Presented at Human Brain Mapping annual meeting. Google Scholar
  59. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure and Function, 214(5-6), 655-667. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Newman, J. P. (1998). Psychopathic behavior: An information processing perspective. In Psychopathy: Theory, research and implications for society (pp. 81–104). Springer Netherlands.Google Scholar
  61. Newman, J. P., Curtin, J. J., Bertsch, J. D., & Baskin-Sommers, A. R. (2010). Attention moderates the fearlessness of psychopathic offenders. Biological Psychiatry, 67(1), 66-70. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus--norepinephrine system. Psychological bulletin, 131(4), 510. CrossRefPubMedGoogle Scholar
  63. Pasion, R., Fernandes, C., Pereira, M. R., & Barbosa, F. (2017). Antisocial behaviour and psychopathy: uncovering the externalizing link in the P3 modulation. Neuroscience & Biobehavioral Reviews, online prior to publication.
  64. Pfefferbaum, A., Ford, J. M., & Kraemer, H. C. (1990). Clinical utility of long latency 'cognitive' event-related potentials (P3): the cons. Electroencephalography and Clinical Neurophysiology, 76, 6-12. CrossRefPubMedGoogle Scholar
  65. Philippi, C. L., Pujara, M. S., Motzkin, J. C., Newman, J., Kiehl, K. A., & Koenigs, M. (2015). Altered resting-state functional connectivity in cortical networks in psychopathy. Journal of Neuroscience, 35(15), 6068-6078. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Polich, J. (1987). Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 68(4), 311-320. CrossRefGoogle Scholar
  67. Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: an integrative review. Biological Psychology, 41(2), 103-146. CrossRefPubMedGoogle Scholar
  68. Polich, J. & Squire, L.R. (1993). P300 from amnesic patients with bilateral hippocampal lesions. Electroencephalography and Clinical Neurphysiology, 86 (6), 408-417. CrossRefGoogle Scholar
  69. Pujol, J., Batalla, I., Contreras-Rodríguez, O., Harrison, B. J., Pera, V., Hernández-Ribas, R., … López-Solà, M. (2011). Breakdown in the brain network subserving moral judgment in criminal psychopathy. Social cognitive and affective neuroscience, 7(8), 917-923. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676-682. CrossRefGoogle Scholar
  71. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349-2356. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sheng, T., Gheytanchi, A., & Aziz-Zadeh, L. (2010). Default network deactivations are correlated with psychopathic personality traits. PloS one, 5(9), e12611. CrossRefPubMedPubMedCentralGoogle Scholar
  73. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences, 105(34), 12569-12574. CrossRefGoogle Scholar
  74. Stark, C. E., & Squire, L. R. (2001). When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proceedings of the National Academy of Sciences, 98(22), 12760-12766. CrossRefGoogle Scholar
  75. Steele, V. R., Maurer, J. M., Bernat, E. M., Calhoun, V. D., Kiehl, K. A. (2016). Error-related processing in adult males with elevated psychopathic traits. Personality Disorders: Theory, Research, and Treatment 7(1), 80-90. CrossRefGoogle Scholar
  76. Stevens, M. C., Laurens, K. R., Liddle, P. F., & Kiehl, K. A. (2006). The hemodynamics of oddball processing during single-tone and two-tone target detection tasks. International journal of psychophysiology, 60(3), 292-303. CrossRefPubMedGoogle Scholar
  77. Sullivan, E. A., & Kosson, D. S. (2006). Ethnic and cultural variations in psychopathy. In C.J. Patrick (Ed.), Handbook of Psychopathy (pp. 437-458). New York: Guilford.Google Scholar
  78. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273-289. CrossRefPubMedGoogle Scholar
  79. Venables, N. C., & Patrick, C. J. (2014). Reconciling discrepant findings for P3 brain response in criminal psychopathy through reference to the concept of externalizing proneness. Psychophysiology, 51(5), 427-436. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ventura, J., Liberman, R. P., Green, M. F., Shaner, A., & Mintz, J. (1998). Training and quality assurance with the Structured Clinical Interview for DSM-IV (SCID-I/P). Psychiatry research, 79(2), 163-173. CrossRefPubMedGoogle Scholar
  81. Verleger, R., Heide, W., Butt, C., & Kompf, D. (1994). Reduction of P3b in patients with temporo-parietal lesions. Cognitive Brain Research, 2, 103-116. CrossRefPubMedGoogle Scholar
  82. Walters, G. D., Duncan, S. A., & Mitchell-Perez, K. (2007). The latent structure of psychopathy: A taxometric investigation of the Psychopathy Checklist–Revised in a heterogeneous sample of male prison inmates. Assessment, 14(3), 270-278.CrossRefPubMedGoogle Scholar
  83. Wechsler, D. A. (1997). Wechsler Adult Intelligence Scale III. San Antonio, TX: The Psychological Corporation.Google Scholar
  84. Wolf, R.C., Pujara, M., Motzkin, J.C., Newman, J. P., Kiehl, K. A., Decety, J., Koenigs, M. (2015). Interpersonal traits of psychopathy linked to reduced integrity of the uncinate fasciculus. Human Brain Mapping, 36(10), 4202–4209. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Nathaniel E. Anderson
    • 1
  • J. Michael Maurer
    • 1
    • 2
  • Vaughn R. Steele
    • 3
  • Kent A. Kiehl
    • 1
    • 2
  1. 1.The Nonprofit Mind Research Network (MRN) & Lovelace Biomedical and Environmental Research Institute (LBERI)AlbuquerqueUSA
  2. 2.University of New MexicoAlbuquerqueUSA
  3. 3.Neuroimaging Research Branch, National Institute of Drug Abuse, Intramural Research ProgramNational Institutes of HealthBaltimoreUSA

Personalised recommendations