Dopamine D2 agonist affects visuospatial working memory distractor interference depending on individual differences in baseline working memory span

  • James M. Broadway
  • Michael J. Frank
  • James F. Cavanagh


The interplay of dopaminergic striatal D1–D2 circuits is thought to support working memory (WM) by selectively filtering information that is to be remembered versus information to be ignored. To test this theory, we conducted an experiment in which healthy participants performed a visuospatial working memory (VSWM) task after ingesting the D2-receptor agonist cabergoline (or placebo), in a randomized, double-blinded, crossover design. Results showed greater interference from distractors under cabergoline, particularly for individuals with higher baseline dopamine (indicated by WM span). These findings support computational theories of striatal D1–D2 function during WM encoding and distractor-filtering, and provide new evidence for interactive cortico-striatal systems that support VSWM capacity and their dependence on WM span.


Agonist Basal ganglia Cabergoline Capacity Dopamine D2 Individual differences Prefrontal cortex Striatum Visuospatial working memory Working memory 



This study was supported by National Science Foundation (NSF) 1125788 and National Institute of General Medical Sciences (NIGMS) 1P20GM109089-01A1.


  1. Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y.,… & Laruelle, M. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proceedings of the National Academy of Sciences, 14, 8104–8109.Google Scholar
  2. Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622–628.CrossRefPubMedGoogle Scholar
  3. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), The psychology of learning and motivation (Vol. 8, pp. 47–89). New York, NY: Academic Press.Google Scholar
  4. Baier, B., Karnath, H., Dietrich, M., Birklein, F., Heinze, C., & Muller, G. (2010). Keeping memory clear and stable—The contribution of human basal ganglia and prefrontal cortex to working memory. The Journal of Neuroscience, 30, 9788–9792.CrossRefPubMedGoogle Scholar
  5. Biller, B. M., Molitch, M. E., Vance, M. L., Cannistraro, K. B., Davis, K. R., Simons, J.,… Klibanski, A. (1996). Treatment of prolactin-secreting macroadenomas with the once-weekly dopamine agonist cabergoline. Journal of Clinical Endocrinology and Metabolism: Clinical and Experimental, 81, 2338–2343.Google Scholar
  6. Brainerd, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433–436.CrossRefGoogle Scholar
  7. Brusa, L., Pavino, V., Massimetti, M. C., Bove, R., Iani, C., & Stanzione, P. (2013). The effect of dopamine agonists on cognitive functions in non-demented early-mild Parkinson’s disease patients. Functional Neurology, 28, 13 – 17.PubMedPubMedCentralGoogle Scholar
  8. Camps, M., Cortes, R., Gueye, B., Probst, A., & Palacios, J. M. (1989). Dopamine receptors in the human brain: Autoradiographic distribution of D sites. Neuroscience, 28, 275–290.CrossRefPubMedGoogle Scholar
  9. Cavanagh, J. F., Masters, S. E., Bath, K., & Frank M. J. (2014). Conflict acts as an implicit cost in reinforcement learning. Nature Communications, 5.
  10. Chatham, C. H., Frank, M. J., & Badre, D. (2014). Corticostriatal output gating during selection from working memory. Neuron, 4, 930–942.CrossRefGoogle Scholar
  11. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analyses for the behavioral sciences. Mahwah, NJ: Erlbaum.Google Scholar
  12. Colzato, L. S., Slagter, H. A., de Rover, M., & Hommel, B. (2011). Dopamine and the management of attentional resources: Genetic markers of striatal D2 dopamine predict individual differences in the attentional blink. Journal of Cognitive Neuroscience, 23, 3576–3585.CrossRefPubMedGoogle Scholar
  13. Cools, R. (2008). Role of dopamine in the motivational and cognitive control of behavior. Neuroscientist, 14, 381–395.CrossRefPubMedGoogle Scholar
  14. Cools, R. (2011). Dopaminergic control of the striatum for high-level cognition. Current Opinion in Neurobiology, 21, 402–407.CrossRefPubMedGoogle Scholar
  15. Cools, R., & D’Esposito, M. (2011). Inverted U-shaped dopamine actions on human working memory and cognitive control. Biological Psychiatry, 69, 113–125.CrossRefGoogle Scholar
  16. Cools, R., Frank, M. J., Gibbs, S. E., Miyakawa, A., Jagust, W., & D’Esposito, M. (2009). Striatal dopamine predicts outcome-specific reversal learning and its sensitivity to dopaminergic drug administration. The Journal of Neuroscience, 29, 1538 - 1543.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cools, R., Gibbs, S. E., Miyakawa, A., Jagust, W., & D’Esposito, M. (2008). Working memory capacity predicts dopamine synthesis capacity in the human striatum. Journal of Neuroscience, 28, 1208–1212.CrossRefPubMedGoogle Scholar
  18. Cools, R., Miyakawa, A., Sheridan, M., & D’Esposito, M. (2010). Enhanced frontal function in Parkinson’s disease. Brain, 133, 225–233.CrossRefPubMedGoogle Scholar
  19. Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–185.CrossRefPubMedGoogle Scholar
  20. Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69, 680–694.CrossRefPubMedGoogle Scholar
  21. Dougherty, D. D., Bonab, A. A., Spencer, T. J., Rauch, S. L., Madras, B. K., & Fischman, A. J. (1999). Dopamine transporter density in patients with attention deficit hyperactivity disorder. The Lancet, 354, 2132–2133.CrossRefGoogle Scholar
  22. Durstewitz, D., & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biological Psychiatry, 64, 739–749.CrossRefPubMedGoogle Scholar
  23. Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent variable approach. Journal of Experimental Psychology: General, 128, 309–331.CrossRefGoogle Scholar
  24. Fallon, S. J., van der Schaaf, M. E., ter Huurne, N., & Cools, R. (2017). The neurocognitive cost of enhancing cognition with methylphenidate: Improved distractor resistance but impaired updating. The Journal of Cognitive Neuroscience, 29, 652–663.CrossRefPubMedGoogle Scholar
  25. Fallon, S. J., Zokaei, N., & Husain, M. (2016). Causes and consequences of limitations in visual working memory. Annals of the New York Academy of Sciences, 1369, 40–54.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fallon, S. J., Zokaei, N., Norbury, A., Manohar, S. G., & Husain, M. (2017). Dopamine alters the fidelity of working memory representations according to attentional demands. Journal of Cognitive Neuroscience, 29, 728–738.CrossRefPubMedGoogle Scholar
  27. Fariello, R. G. (1998). Pharmacodynamic and pharmacokinetic features of cabergoline. Drugs,55(Suppl.), 10–16.CrossRefPubMedGoogle Scholar
  28. Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and non-medicated parkinsonism. Journal of Cognitive Neuroscience, 17, 51–72.CrossRefPubMedGoogle Scholar
  29. Frank, M. J., & Fossella, J. A. (2011). Neurogenetics and pharmacology of learning, motivation, and cognition. Neuropsychopharmacology Reviews, 36, 133–152.CrossRefPubMedGoogle Scholar
  30. Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between prefrontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, & Behavioral Neuroscience, 1, 137–160.CrossRefGoogle Scholar
  31. Frank, M. J., & O’Reilly, R. C. (2006). A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol. Behavioral Neuroscience, 120, 497–517.CrossRefPubMedGoogle Scholar
  32. Frank, M. J., Santamaria, A., O’Reilly, R. C., & Wilcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention-deficit/hyperactivity disorder. Neuropsychopharmacology, 32, 1583–1599.CrossRefPubMedGoogle Scholar
  33. Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete capacity limits in visual working memory. Current Opinion in Neurobiology, 20, 177–182.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gee, S., Ellwood, I., Patel, T., Luongo, F., Deiserroth, K., & Sohal, V. S. (2012). Synaptic activity unmasks dopamine D2 receptor modulation of a specific class of Layer V pyramidal neurons in prefrontal cortex. The Journal of Neuroscience, 32, 4959–4971.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gerlach, M., Double, K., Arzberger, T., Leblhuber, F., Tatschner, T., & Riederer, P. (2003). Dopamine receptor agonists in current clinical use: Comparative dopamine receptor binding profiles defined in the human striatum. Journal of Neural Transmission, 110, 1119–1127.CrossRefPubMedGoogle Scholar
  36. Gibbs, S. E. B., & D’Esposito, M. (2005). Individual capacity differences predict working memory performance and prefrontal activity following dopamine receptor stimulation. Cognitive, Affective, & Behavioral Neuroscience, 5, 212–221.CrossRefGoogle Scholar
  37. Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society B.
  38. Ichikawa, K., & Kojima, M. (2001). Pharmacological effects of cabergoline against parkinsonism. Nippon Yakurigaku Zasshi, 117, 395–400.CrossRefPubMedGoogle Scholar
  39. Ilkowska, M., & Engle, R. W. (2010). Trait and state differences in working memory capacity. In A. Gruszka, G. Matthews, & B. Szymura (Eds.), Handbook of individual differences in cognition: Attention, memory, and executive control (pp 295–319). New York, NY: Springer.CrossRefGoogle Scholar
  40. Jenni, N. L., Larkin, J. D., & Floresco, S. B. (2017). Prefrontal dopamine D1 and D2 receptors regulate dissociable aspects of decision-making via distinct ventral striatal and amygdalar circuits. The Journal of Neuroscience, 37, 6200–6213.CrossRefPubMedGoogle Scholar
  41. Kane, M. J., & Engle, R. W. (2002). The role of prefrontal cortex in working memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637–671.CrossRefGoogle Scholar
  42. Kimberg, D. Y., D’Esposito, M., & Farah, M. J. (1997). Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport, 8, 3581–3585.CrossRefPubMedGoogle Scholar
  43. Landau, S. M., Lal, R., O’Neil, J. P., Baker, S., & Jagust, W. J. (2009). Striatal dopamine and working memory. Cerebral Cortex, 19, 445–454.CrossRefPubMedGoogle Scholar
  44. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.CrossRefPubMedGoogle Scholar
  45. Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17, 391–400.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ma, J. M., Husain, M., & Bays, P. M. (2014). Changing concepts of working memory. Nature Neuroscience, 17, 347–536.CrossRefPubMedPubMedCentralGoogle Scholar
  47. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11, 103–107.CrossRefPubMedGoogle Scholar
  48. Meng, X., Rosenthal, R., & Rubin, D. B. (1992). Comparing correlated correlation coefficients. Psychological Bulletin, 111, 172–175.CrossRefGoogle Scholar
  49. Millan, M. J., Maoffiss, L., Didra, C., Audino, V., Bontin, J., & Newman-Tancredi, A. (2002). Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor: I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. The Journal of Pharmacology and Experimental Therapeutics, 303, 791–804.CrossRefPubMedGoogle Scholar
  50. Moustafa, A. A., Sherman, S. J., & Frank, M. J. (2008). A dopaminergic basis for working memory, learning and attentional shifting in parkinsonism. Neuropsychologia, 46, 3144–3156.CrossRefPubMedGoogle Scholar
  51. Nassar, M. R., Helmers, J., & Frank, M. J. (2017). Chunking as a rational strategy for lossy data compression in visual working memory tasks. Retrieved from
  52. O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the frontal cortex and basal ganglia. Neural Computation, 18, 283–328.CrossRefPubMedGoogle Scholar
  53. Redick, T. S., Broadway, J. M., Meier, M. E., Kuriakose, P. S., Unsworth, N., Kane, M. J., & Engle, R. W. (2012). Measuring working memory capacity with automated complex span tasks. European Journal of Psychological Assessment, 28, 164–171. CrossRefGoogle Scholar
  54. Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18, 324–330.CrossRefGoogle Scholar
  55. Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime user’s guide. Pittsburgh, PA: Psychology Software Tools.Google Scholar
  56. Slagter, H. A., Tomer, R., Christian, B. T., Fox, A. S., Colzato, L. S., King, C. R.,… Davidson, R. J. (2012). PET evidence for a role for striatal dopamine in the attentional blink: Functional implications. Journal of Cognitive Neuroscience, 24, 1932–1940.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Stocchi, F., Vacca, L., Berardelli, A., Onofj, M., Manfredi, M., & Ruggieri, S. (2003). Dual dopamine agonist treatment in Parkinson’s disease. Journal of Neurology, 250, 822–826.CrossRefPubMedGoogle Scholar
  58. Trantham-Davidson, H., Neely, L. C., Lavin, A., & Seamans, J. K. (2004). Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. The Journal of Neuroscience, 24, 10652–10659.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: An examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133, 1038–1066.CrossRefPubMedGoogle Scholar
  60. Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37, 498–505.CrossRefPubMedGoogle Scholar
  61. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500–503.CrossRefPubMedGoogle Scholar
  62. Zhang, W., & Luck, S. J. (2008). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12, 24–25.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • James M. Broadway
    • 1
  • Michael J. Frank
    • 2
  • James F. Cavanagh
    • 1
  1. 1.Department of NeurosciencesUniversity of New MexicoAlbuquerqueUSA
  2. 2.Brown UniversityProvidenceUSA

Personalised recommendations