Transient and sustained incentive effects on electrophysiological indices of cognitive control in younger and older adults

  • Ryan S. Williams
  • Farrah Kudus
  • Benjamin J. Dyson
  • Julia Spaniol


Preparing for upcoming events, separating task-relevant from task-irrelevant information and efficiently responding to stimuli all require cognitive control. The adaptive recruitment of cognitive control depends on activity in the dopaminergic reward system as well as the frontoparietal control network. In healthy aging, dopaminergic neuromodulation is reduced, resulting in altered incentive-based recruitment of control mechanisms. In the present study, younger adults (18–28 years) and healthy older adults (66–89 years) completed an incentivized flanker task that included gain, loss, and neutral trials. Event-related potentials (ERPs) were recorded at the time of incentive cue and target presentation. We examined the contingent negative variation (CNV), implicated in stimulus anticipation and response preparation, as well as the P3, which is involved in the evaluation of visual stimuli. Both younger and older adults showed transient incentive-based modulation of CNV. Critically, cue-locked and target-locked P3s were influenced by transient and sustained effects of incentives in younger adults, while such modulation was limited to a sustained effect of gain incentives on cue-P3 in older adults. Overall, these findings are in line with an age-related reduction in the flexible recruitment of preparatory and target-related cognitive control processes in the presence of motivational incentives.


Aging Flanker task Event-related potentials CNV P3 Reward 



We thank Carson Pun for technical support during data collection and data analysis. We also thank Laura Bianchi and Ryan Marinacci for their assistance with data collection. This research was supported by a grant from the Natural Sciences and Engineering Research Council (DG# 358797 to J.S.), by the Canada Research Chair program (J.S.), and by an Early Researcher Award from the Ontario Ministry of Research and Innovation (J.S.)


  1. Bekker, E. M., Kenemans, J. L., & Verbaten, M. N. (2004). Electrophysiological correlates of attention, inhibition, sensitivity and bias in a continuous performance task. Clinical Neurophysiology, 115, 2001–2013.CrossRefPubMedGoogle Scholar
  2. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological), 57, 289–300.Google Scholar
  3. Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R., & Linden, D. E. (2004). Localizing P300 generators in visual target and distractor processing: A combined event-related potential and functional magnetic resonance imaging study. Journal of Neuroscience, 24, 9353–9360.CrossRefPubMedGoogle Scholar
  4. Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16, 106–113.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Broyd, S. J., Richards, H. J., Helps, S. K., Chronaki, G., Bamford, S., & Sonuga-Barke, E. J. (2012). An electrophysiological monetary incentive delay (e-MID) task: A way to decompose the different components of neural response to positive and negative monetary reinforcement. Journal of Neuroscience Methods, 209, 40–49.CrossRefPubMedGoogle Scholar
  6. Carter, R. M., MacInnes, J. J., Huettel, S. A., & Adcock, R. A. (2009). Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontiers in Behavioral Neuroscience, 3, 21.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67, 319–333.CrossRefGoogle Scholar
  8. Chiew, K. S., & Braver, T. S. (2013). Temporal dynamics of motivation-cognitive control interactions revealed by high-resolution pupillometry. Frontiers in Psychology, 4, 15.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chiew, K. S., & Braver, T. S. (2016). Reward favors the prepared: Incentive and task-informative cues interact to enhance attentional control. Journal of Experimental Psychology: Human Perception and Performance, 42, 52–66.PubMedGoogle Scholar
  10. Cho, Y. T., Fromm, S., Guyer, A. E., Detloff, A., Pine, D. S., Fudge, J. L., & Ernst, M. (2013). Nucleus accumbens, thalamus and insula connectivity during incentive anticipation in typical adults and adolescents. NeuroImage, 66, 508–521.CrossRefPubMedGoogle Scholar
  11. Chowdhury, R., Guitart-Masip, M., Lambert, C., Dayan, P., Huys, Q., Düzel, E., & Dolan, R. J. (2013). Dopamine restores reward prediction errors in old age. Nature Neuroscience, 16, 648–653.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Corbetta M, Patel G, Shulman GL (2008) The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron 58(3):306–324CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dambacher, M., & Hübner, R. (2015). Time pressure affects the efficiency of perceptual processing in decisions under conflict. Psychological Research, 79, 83–94.CrossRefPubMedGoogle Scholar
  14. de la Fuente-Fernández, R., Phillips, A. G., Zamburlini, M., Sossi, V., Calne, D. B., Ruth, T. J., & Stoessl, A. J. (2002). Dopamine release in human ventral striatum and expectation of reward. Behavioural Brain Research, 136, 359–363.CrossRefPubMedGoogle Scholar
  15. Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134, 9–21.CrossRefPubMedGoogle Scholar
  16. Delorme, A., Sejnowski, T., & Makeig, S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage, 34, 1443–1449.CrossRefPubMedGoogle Scholar
  17. Dreher, J. C., Meyer-Lindenberg, A., Kohn, P., & Berman, K. F. (2008). Age-related changes in midbrain dopaminergic regulation of the human reward system. Proceedings of the National Academy of Sciences, 105, 15106–15111.CrossRefGoogle Scholar
  18. Egner, T., Monti, J. M., Trittschuh, E. H., Wieneke, C. A., Hirsch, J., & Mesulam, M. M. (2008). Neural integration of top-down spatial and feature-based information in visual search. Journal of Neuroscience, 28, 6141–6151.CrossRefPubMedGoogle Scholar
  19. Eppinger, B., & Kray, J. (2011). To choose or to avoid: Age differences in learning from positive and negative feedback. Journal of Cognitive Neuroscience, 23(1), 41–52.CrossRefPubMedGoogle Scholar
  20. Eppinger, B., Nystrom, L. E., & Cohen, J. D. (2012). Reduced sensitivity to immediate reward during decision-making in older than younger adults. PLOS ONE, 7, e36953.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Attention, Perception, & Psychophysics, 16, 143–149.CrossRefGoogle Scholar
  22. Ferdinand, N. K., & Kray, J. (2013). Age-related changes in processing positive and negative feedback: Is there a positivity effect for older adults? Biological Psychology, 94(2), 235–241.CrossRefPubMedGoogle Scholar
  23. Funderud, I., Lindgren, M., Løvstad, M., Endestad, T., Voytek, B., Knight, R. T., & Solbakk, A. K. (2012). Differential go/nogo activity in both contingent negative variation and spectral power. PLOS ONE, 7, e48504.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.CrossRefPubMedGoogle Scholar
  25. Gajewski, P. D., Stoerig, P., & Falkenstein, M. (2008). ERP—Correlates of response selection in a response conflict paradigm. Brain Research, 1189, 127–134.CrossRefPubMedGoogle Scholar
  26. Gillebert, C. R., Mantini, D., Thijs, V., Sunaert, S., Dupont, P., & Vandenberghe, R. (2011). Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain, 134, 1694–1709.CrossRefPubMedGoogle Scholar
  27. Gómez, C. M., Flores, A., & Ledesma, A. (2007). Fronto-parietal networks activation during the contingent negative variation period. Brain Research Bulletin, 73, 40–47.CrossRefPubMedGoogle Scholar
  28. Green, L., Fry, A. F., & Myerson, J. (1994). Discounting of delayed rewards: A life-span comparison. Psychological Science, 5, 33–36.CrossRefGoogle Scholar
  29. Hagen, G. F., Gatherwright, J. R., Lopez, B. A., & Polich, J. (2006). P3a from visual stimuli: Task difficulty effects. International Journal of Psychophysiology, 59, 8–14.CrossRefPubMedGoogle Scholar
  30. Hämmerer, D., Li, S. C., Müller, V., & Lindenberger, U. (2010). An electrophysiological study of response conflict processing across the lifespan: Assessing the roles of conflict monitoring, cue utilization, response anticipation, and response suppression. Neuropsychologia, 48, 3305–3316.CrossRefPubMedGoogle Scholar
  31. Henry, J. M., Filburn, C. R., Joseph, J. A., & Roth, G. S. (1986). Effect of aging on striatal dopamine receptor subtypes in Wistar rats. Neurobiology of Aging, 7, 357–361.CrossRefPubMedGoogle Scholar
  32. Herbert, M., Eppinger, B., & Kray, J. (2011). Younger but not older adults benefit from salient feedback during learning. Frontiers in Psychology, 2, 171.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Holroyd, C. B., & Krigolson O. E. (2007). Reward prediction error signals associated with a modified time estimation task. Psychophysiology, 44 , 913–917.CrossRefPubMedGoogle Scholar
  34. Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3, 284–291.CrossRefPubMedGoogle Scholar
  35. Hübner, R., & Schlösser, J. (2010). Monetary reward increases attentional effort in the flanker task. Psychonomic Bulletin & Review, 17, 821–826.CrossRefGoogle Scholar
  36. Ivanov, I., Liu, X., Clerkin, S., Schulz, K., Friston, K., Newcorn, J. H., & Fan, J. (2012). Effects of motivation on reward and attentional networks: An fMRI study. Brain and Behavior, 2, 741–753.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences, 107, 8871–8876.CrossRefGoogle Scholar
  38. Jonkman, L. M. (2006). The development of preparation, conflict monitoring and inhibition from early childhood to young adulthood: A go/no-go ERP study. Brain Research, 1097, 181–193.CrossRefPubMedGoogle Scholar
  39. Kaasinen, V., Vilkman, H., Hietala, J., Någren, K., Helenius, H., Olsson, H., . . . & Rinne, J. O. (2000). Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiology of Aging, 21, 683–688.Google Scholar
  40. Kim, K. H., Kim, J. H., Yoon, J., & Jung, K. Y. (2008). Influence of task difficulty on the features of event-related potential during visual oddball task. Neuroscience Letters, 445(2), 179–183.CrossRefPubMedGoogle Scholar
  41. Knutson, B., Westdorp, A., Kaiser, E., & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12, 20–27.Google Scholar
  42. Kool, W., & Botvinick, M. (2014). A labor/leisure tradeoff in cognitive control. Journal of Experimental Psychology: General, 143, 131–141.CrossRefGoogle Scholar
  43. Kray, J., Eppinger, B., & Mecklinger, A. (2005). Age differences in attentional control: An event-related potential approach. Psychophysiology, 42, 407–416.CrossRefPubMedGoogle Scholar
  44. Krebs, R. M., Boehler, C. N., Appelbaum, L. G., & Woldorff, M. G. (2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLOS ONE, 8, e53894.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22, 607–615.CrossRefPubMedGoogle Scholar
  46. Krebs, R. M., Boehler, C. N., & Woldorff, M. G. (2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117, 341–347.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kropotov, J., Ponomarev, V., Tereshchenko, E. P., Müller, A., & Jäncke, L. (2016). Effect of aging on ERP components of cognitive control. Frontiers in Aging Neuroscience, 8, 69. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, 213.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behaviour Research and Therapy, 33, 335–343.CrossRefPubMedGoogle Scholar
  50. Marini, F., van den Berg, B., & Woldorff, M. G. (2015). Reward prospect interacts with trial-by-trial preparation for potential distraction. Visual Cognition, 23(1), 313–335.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Massar, S. A., Lim, J., Sasmita, K., & Chee, M. W. (2016). Rewards boost sustained attention through higher effort: A value-based decision making approach. Biological Psychology, 120, 21–27.CrossRefPubMedGoogle Scholar
  52. Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Sciences, 9, 496–502.CrossRefPubMedGoogle Scholar
  53. Mell, T., Wartenburger, I., Marschner, A., Villringer, A., Reischies, F. M., & Heekeren, H. R. (2009). Altered function of ventral striatum during reward-based decision making in old age. Frontiers in Human Neuroscience, 3, 34.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Miltner, W. H. R., Braun, C. H., & Coles M. G. H. (1997). Event related brain potentials following incorrect feedback in a time estimation task: Evidence for a generic neural system for error detection. Journal of Cognitive Neuroscience, 9, 787–796.CrossRefGoogle Scholar
  55. Müller, S. V., Möller, J., Rodriguez-Fornells, A., & Münte, T. F. (2006). Brain potentials related to self-generated and external information used for performance monitoring. Clinical Neurophysiology, 116, 63–741.CrossRefGoogle Scholar
  56. Nagai, Y., Critchley, H. D., Featherstone, E., Fenwick, P. B. C., Trimble, M. R., & Dolan, R. J. (2004). Brain activity relating to the contingent negative variation: An fMRI investigation. NeuroImage, 21, 1232–1241.CrossRefPubMedGoogle Scholar
  57. Nieuwenhuis, S., Aston-Jones, G., & Cohen, J. D. (2005). Decision making, the P3, and the locus coeruleus—Norepinephrine system. Psychological Bulletin, 131, 510–532.CrossRefPubMedGoogle Scholar
  58. Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23, 3419–3432.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pfabigan DM, Seidel E-M, Sladky R, Hahn A, Paul K, Grahl A, Küblböck M, Kraus C, Hummer A, Kranz GS, Windischberger C, Lanzenberger R, Lamm C (2014) P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: An EEG and fMRI experiment. NeuroImage 96:12–21CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pfeuty, M., Ragot, R., & Pouthas, V. (2005). Relationship between CNV and timing of an upcoming event. Neuroscience Letters, 382, 106–111.CrossRefPubMedGoogle Scholar
  61. Plichta MM, Wolf I, Hohmann S, Baumeister S, Boecker R, Schwarz AJ, Zangl M, Mier D, Diener C, Meyer P, Holz N, Ruf M, Gerchen MF, Bernal-Casas D, Kolev V, Yordanova J, Flor H, Laucht M, Banaschewski T, Kirsch P, Meyer-Lindenberg A, Brandeis D (2013) Simultaneous EEG and fMRI Reveals a Causally Connected Subcortical-Cortical Network during Reward Anticipation. J Neurosci 33(36):14526–14533CrossRefPubMedGoogle Scholar
  62. Pogarell, O., Padberg, F., Karch, S., Segmiller, F., Juckel, G., Mulert, C., . . . & Koch, W. (2011). Dopaminergic mechanisms of target detection—P300 event related potential and striatal dopamine. Psychiatry Research: Neuroimaging, 194(3), 212–218.Google Scholar
  63. Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118, 2128–2148.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Purmann, S., Badde, S., Luna-Rodriguez, A., & Wendt, M. (2011). Adaptation to frequent conflict in the Eriksen flanker task. Journal of Psychophysiology, 25, 50–59.CrossRefGoogle Scholar
  65. Rademacher, L., Salama, A., Gründer, G., & Spreckelmeyer, K. N. (2014). Differential patterns of nucleus accumbens activation during anticipation of monetary and social reward in young and older adults. Social Cognitive and Affective Neuroscience, 9, 825–831.CrossRefPubMedGoogle Scholar
  66. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.CrossRefGoogle Scholar
  67. Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging on reaction time in a signal detection task. Psychology and Aging, 16, 323–341.CrossRefPubMedGoogle Scholar
  68. Raven, J. C. (1982). Revised manual for Raven’s Progressive Matrices and Vocabulary Scales. San Antonio, TX: Psychological Corporation.Google Scholar
  69. Reed, A. E., & Carstensen, L. L. (2012). The theory behind the age-related positivity effect. Frontiers in Psychology, 3. doi:
  70. Reuter, E. M., Voelcker-Rehage, C., Vieluf, S., Lesemann, F. P., & Godde, B. (2016). The P3 parietal-to-frontal shift relates to age-related slowing in a selective attention task. Journal of Psychophysiology, 31, 1–18.Google Scholar
  71. Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks: Empirical clarification through distributional analyses. In W. Prinz & B. Hommel (Eds.), Common Mechanisms in Perception and Action: Attention & performance (Vol. 19, pp. 494–519). Oxford, UK: Oxford University Press.Google Scholar
  72. Ridderinkhof, K. R., Scheres, A., Oosterlaan, J., & Sergeant, J. A. (2005). Delta plots in the study of individual differences: New tools reveal response inhibition deficits in AD/HD that are eliminated by methylphenidate treatment. Journal of Abnormal Psychology, 114, 197.CrossRefPubMedGoogle Scholar
  73. Rinne, J. O., Hietala, J., Ruotsalainen, U., Säkö, E., Laihinen, A., Någren, K., . . . & Syvälahti, E. (1993). Decrease in human striatal dopamine D2 receptor density with age: A PET study with [11C] raclopride. Journal of Cerebral Blood Flow & Metabolism, 13, 310–314.Google Scholar
  74. Roelofs, A., Piai, V., & Rodriguez, G. G. (2011). Attentional inhibition in bilingual naming performance: Evidence from delta-plot analyses. Frontiers in Psychology, 2. doi:
  75. Roesch, M. R., & Olson, C. R. (2003). Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. Journal of Neurophysiology, 90, 1766–1789.CrossRefPubMedGoogle Scholar
  76. Samanez-Larkin, G. R., Gibbs, S. E., Khanna, K., Nielsen, L., Carstensen, L. L., & Knutson, B. (2007). Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience, 10, 787–791.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Savine, A. C., Beck, S. M., Edwards, B. G., Chiew, K. S., & Braver, T. S. (2010). Enhancement of cognitive control by approach and avoidance motivational states. Cognition and Emotion, 24, 338–356.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Schevernels, H., Bombeke, K., Krebs, R. M., & Boehler, C. N. (2016). Preparing for (valenced) action: The role of differential effort in the orthogonalized go/nogo task. Psychophysiology, 53, 186–197.CrossRefPubMedGoogle Scholar
  79. Schevernels, H., Krebs, R. M., Santens, P., Woldorff, M. G., & Boehler, C. N. (2014). Task preparation processes related to reward prediction precede those related to task-difficulty expectation. NeuroImage, 84, 639–647.CrossRefPubMedGoogle Scholar
  80. Schmitt, H., Ferdinand, N. K., & Kray, J. (2015). The influence of monetary incentives on context processing in younger and older adults: An event-related potential study. Cognitive, Affective, & Behavioral Neuroscience, 15, 416–434.CrossRefGoogle Scholar
  81. Schott, B. H., Minuzzi, L., Krebs, R. M., Elmenhorst, D., Lang, M., Winz, O. H., . . . & Düzel, E. (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. Journal of Neuroscience, 28, 14311–14319.Google Scholar
  82. Schott, B. H., Niehaus, L., Wittmann, B. C., Schütze, H., Seidenbecher, C. I., Heinze, H. J., & Düzel, E. (2007). Ageing and early-stage Parkinson's disease affect separable neural mechanisms of mesolimbic reward processing. Brain, 130, 2412–2424.CrossRefPubMedGoogle Scholar
  83. Spaniol, J., Bowen, H. J., Wegier, P., & Grady, C. (2015). Neural responses to monetary incentives in younger and older adults. Brain Research, 1612, 70–82.CrossRefPubMedGoogle Scholar
  84. Starns, J. J., & Ratcliff, R. (2010). The effects of aging on the speed–accuracy compromise: Boundary optimality in the diffusion model. Psychology and Aging, 25, 377–390.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Starns, J. J., & Ratcliff, R. (2012). Age-related differences in diffusion model boundary optimality with both trial-limited and time-limited tasks. Psychonomic Bulletin & Review, 19, 139–145.CrossRefGoogle Scholar
  86. Tom, S. M., Fox, C. R., Trepel, C., & Poldrack, R. A. (2007). The neural basis of loss aversion in decision-making under risk. Science, 315, 515–518.CrossRefPubMedGoogle Scholar
  87. Townsend, J. T., & Ashby, F. G. (1978). Methods of modeling capacity in simple processing systems. In J. N. J. Castellan & F. Restle (Eds.), Cognitive theory (pp. 199–239). New York, NY: Erlbaum.Google Scholar
  88. van den Berg, B., Krebs, R. M., Lorist, M. M., & Woldorff, M. G. (2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive, Affective, & Behavioral Neuroscience, 14, 561–577.CrossRefGoogle Scholar
  89. Vink, M., Kleerekooper, I., van den Wildenberg, W. P., & Kahn, R. S. (2015). Impact of aging on frontostriatal reward processing. Human Brain Mapping, 36, 2305–2317.CrossRefPubMedGoogle Scholar
  90. Wagenmakers, E. J., Ratcliff, R., Gomez, P., & McKoon, G. (2008). A diffusion model account of criterion shifts in the lexical decision task. Journal of Memory and Language, 58(1), 140–159.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wang, Y., Chan, G. L., Holden, J. E., Dobko, T., Mak, E., Schulzer, M., . . . & Stoessl, A. J. (1998). Age-dependent decline of dopamine D1 receptors in human brain: A PET study. Synapse, 30, 56–61.Google Scholar
  92. Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54, 1063–1070.CrossRefPubMedGoogle Scholar
  93. Wechsler, D. (1955). Wechsler Adult Intelligence Scale: Manual. New York, NY: Psychological Corporation.Google Scholar
  94. Weiler, J. A., Bellebaum, C., & Daum, I. (2008). Aging affects acquisition and reversal of reward-based associative learning. Learning & Memory, 15, 190–197.CrossRefGoogle Scholar
  95. Wenzlaff, H., Bauer, M., Maess, B., & Heekeren, H. R. (2011). Neural characterization of the speed–accuracy tradeoff in a perceptual decision-making task. Journal of Neuroscience, 31, 1254–1266.CrossRefPubMedGoogle Scholar
  96. Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic approach. Cognitive, Affective, & Behavioral Neuroscience, 15, 395–415.CrossRefGoogle Scholar
  97. Wolterink, G., Phillips, G., Cador, M., Donselaar-Wolterink, I., Robbins, T. W., & Everitt, B. J. (1993). Relative roles of ventral striatal D 1 and D 2 dopamine receptors in responding with conditioned reinforcement. Psychopharmacology, 110, 355–364.CrossRefPubMedGoogle Scholar
  98. Wild-Wall, N., Falkenstein, M., & Hohnsbein, J. (2008). Flanker interference in young and older participants as reflected in event-related potentials. Brain Research, 1211, 72–84.CrossRefPubMedGoogle Scholar
  99. Wild-Wall, N., Hohnsbein, J., & Falkenstein, M. (2007). Effects of ageing on cognitive task preparation as reflected by event-related potentials. Clinical Neurophysiology, 118(3), 558–569.CrossRefPubMedGoogle Scholar
  100. Williams, R. S., Biel, A. L., Dyson, B. J., & Spaniol, J. (2017). Age differences in gain-and loss-motivated attention. Brain and Cognition, 111, 171–181.CrossRefPubMedGoogle Scholar
  101. Williams, R. S., Biel, A. L., Wegier, P., Lapp, L. K., Dyson, B. J., & Spaniol, J. (2016). Age differences in the Attention Network Test: Evidence from behavior and event-related potentials. Brain and Cognition, 102, 65–79.CrossRefPubMedGoogle Scholar
  102. Wylie, S. A., Ridderinkhof, K. R., Eckerle, M. K., & Manning, C. A. (2007). Inefficient response inhibition in individuals with mild cognitive impairment. Neuropsychologia, 45, 1408–1419.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Ryan S. Williams
    • 1
    • 2
  • Farrah Kudus
    • 1
  • Benjamin J. Dyson
    • 1
    • 3
  • Julia Spaniol
    • 1
  1. 1.Ryerson UniversityTorontoCanada
  2. 2.University of TorontoTorontoCanada
  3. 3.University of SussexFalmerUK

Personalised recommendations