Neural correlates of three cognitive processes involved in theory of mind and discourse comprehension

  • Nan Lin
  • Xiaohong Yang
  • Jing Li
  • Shaonan Wang
  • Huimin Hua
  • Yujun Ma
  • Xingshan Li


Neuroimaging studies have found that theory of mind (ToM) and discourse comprehension involve similar brain regions. These brain regions may be associated with three cognitive components that are necessarily or frequently involved in ToM and discourse comprehension, including social concept representation and retrieval, domain-general semantic integration, and domain-specific integration of social semantic contents. Using fMRI, we investigated the neural correlates of these three cognitive components by exploring how discourse topic (social/nonsocial) and discourse processing period (ending/beginning) modulate brain activation in a discourse comprehension (and also ToM) task. Different sets of brain areas showed sensitivity to discourse topic, discourse processing period, and the interaction between them, respectively. The most novel finding was that the right temporoparietal junction and middle temporal gyrus showed sensitivity to discourse processing period only during social discourse comprehension, indicating that they selectively contribute to domain-specific semantic integration. Our finding indicates how different domains of semantic information are processed and integrated in the brain and provides new insights into the neural correlates of ToM and discourse comprehension.


Mentalizing Discourse processing Social concept Semantic integration fMRI 



This work was supported by the National Natural Science Foundation of China (Grant numbers: 31300842, 31400968, 31300859, and 31571125) and the Beijing Advanced Innovation Center for Imaging Technology (BAICIT-2016018).

Supplementary material

13415_2018_568_MOESM1_ESM.doc (132 kb)
ESM 1 (DOC 131 kb)


  1. Apperly, I. A., Samson, D., Chiavarino, C., Bickerton, W. L., & Humphreys, G. W. (2007). Testing the domain-specificity of a theory of mind deficit in brain-injured patients: Evidence for consistent performance on non-verbal, "reality-unknown" false belief and false photograph tasks. Cognition, 103(2), 300-321.CrossRefPubMedGoogle Scholar
  2. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839-851.CrossRefPubMedGoogle Scholar
  3. Baron, S. G., & Osherson, D. (2011). Evidence for conceptual combination in the left anterior temporal lobe. Neuroimage, 55(4), 1847-1852.CrossRefPubMedGoogle Scholar
  4. Bemis, D. K., & Pylkkanen, L. (2011). Simple Composition: A Magnetoencephalography Investigation into the Comprehension of Minimal Linguistic Phrases. Journal of Neuroscience, 31(8), 2801-2814.CrossRefPubMedGoogle Scholar
  5. Bemis, D. K., & Pylkkanen, L. (2013). Basic Linguistic Composition Recruits the Left Anterior Temporal Lobe and Left Angular Gyrus During Both Listening and Reading. Cerebral Cortex, 23(8), 1859-1873.CrossRefPubMedGoogle Scholar
  6. Binder, J. R., Conant, L. L., Humphries, C. J., Fernandino, L., Simons, S. B., Aguilar, M., & Desai, R. H. (2016). Toward a brain-based componential semantic representation. Cognitive neuropsychology, 33(3-4), 130-174.CrossRefPubMedGoogle Scholar
  7. Carlson, S. M., & Moses, L. J. (2001). Individual differences in inhibitory control and children's theory of mind. Child Development, 72(4), 1032-1053.CrossRefPubMedGoogle Scholar
  8. Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage, 37(1), 343-360.CrossRefPubMedGoogle Scholar
  9. Dodell-Feder, D., Koster-Hale, J., Bedny, M., & Saxe, R. (2011). fMRI item analysis in a theory of mind task. Neuroimage, 55(2), 705-712.CrossRefPubMedGoogle Scholar
  10. Ferstl, E. C. (2010). Neuroimaging of text comprehension: Where are we now. Italian Journal of Linguistics, 22(1), 61-88.Google Scholar
  11. Ferstl, E. C., Neumann, J., Bogler, C., & von Cramon, D. Y. (2008). The extended language network: A meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29(5), 581-593.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ferstl, E. C., & von Cramon, D. Y. (2001). The role of coherence and cohesion in text comprehension: an event-related fMRI study. Cognitive Brain Research, 11(3), 325-340.CrossRefPubMedGoogle Scholar
  13. Ferstl, E. C., & von Cramon, D. Y. (2002). What does the frontomedian cortex contribute to language processing: coherence or theory of mind? Neuroimage, 17(3), 1599-1612.CrossRefPubMedGoogle Scholar
  14. Fiske, A. P. (1992). The four elementary forms of sociality: framework for a unified theory of social relations. Psychological review, 99(4), 689.CrossRefPubMedGoogle Scholar
  15. Fiske, S. T., Cuddy, A. J., Glick, P., & Xu, J. (2002). A model of (often mixed) stereotype content: competence and warmth respectively follow from perceived status and competition. Journal of personality and social psychology, 82(6), 878.CrossRefPubMedGoogle Scholar
  16. Hagoort, P. (2013). MUC (memory, unification, control) and beyond. Frontiers in Psychology, 4, 416.PubMedPubMedCentralGoogle Scholar
  17. Hagoort, P., & Indefrey, P. (2014). The Neurobiology of Language Beyond Single Words. Annual Review of Neuroscience, 37, 347-362.CrossRefPubMedGoogle Scholar
  18. Humphries, C., Binder, J. R., Medler, D. A., & Liebenthal, E. (2006). Syntactic and semantic modulation of neural activity during auditory sentence comprehension. Journal of cognitive neuroscience, 18(4), 665-679.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Humphries, C., Binder, J. R., Medler, D. A., & Liebenthal, E. (2007). Time course of semantic processes during sentence comprehension: An fMRI study. Neuroimage, 36(3), 924-932.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jacoby, N., Bruneau, E., Koster-Hale, J., & Saxe, R. (2016). Localizing Pain Matrix and Theory of Mind networks with both verbal and non-verbal stimuli. Neuroimage, 126, 39-48.CrossRefPubMedGoogle Scholar
  21. Jung-Beeman, M. (2005). Bilateral brain processes for comprehending natural language. Trends in Cognitive Sciences, 9(11), 512-518.CrossRefPubMedGoogle Scholar
  22. Kintsch, W., & Van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological review, 85(5), 363.CrossRefGoogle Scholar
  23. Lavoie, M. A., Vistoli, D., Sutliff, S., Jackson, P. L., & Achim, A. M. (2016). Social representations and contextual adjustments as two distinct processes of the Theory of Mind brain network: Evidence from the REMICS task. Cortex, 81, 176-191.CrossRefPubMedGoogle Scholar
  24. Lerner, Y., Honey, C. J., Silbert, L. J., & Hasson, U. (2011). Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience, 31(8), 2906-2915.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Leslie, A. M. (1994). Pretending and believing: issues in the theory of ToMM. Cognition, 50(1-3), 211-238.CrossRefPubMedGoogle Scholar
  26. Leslie, A. M., Friedman, O., & German, T. P. (2004). Core mechanisms in 'theory of mind'. Trends in Cognitive Sciences, 8(12), 528-533.CrossRefPubMedGoogle Scholar
  27. Lin, N., Bi, Y. C., Zhao, Y., Luo, C. M., & Li, X. S. (2015). The theory-of-mind network in support of action verb comprehension: Evidence from an fMRI study. Brain and Language, 141, 1-10.CrossRefPubMedGoogle Scholar
  28. Lin, N., Wang, X., Xu, Y., Wang, X., Hua, H., Zhao, Y., & Li, X. (2017). Fine Subdivisions of the Semantic Network Supporting Social and Sensory–Motor Semantic Processing. Cerebral Cortex, 1–12.
  29. Loftus, E. F., Miller, D. G., & Burns, H. J. (1978). Semantic integration of verbal information into a visual memory. Journal of experimental psychology: Human learning and memory, 4(1), 19.Google Scholar
  30. Mahon, B. Z., & Caramazza, A. (2009). Concepts and Categories: A Cognitive Neuropsychological Perspective. Annual Review of Psychology, 60, 27-51.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mar, R. A. (2011). The Neural Bases of Social Cognition and Story Comprehension. Annual Review of Psychology, 62, 103-134.CrossRefPubMedGoogle Scholar
  32. Martin, A. (2007). The representation of object concepts in the brain. Annual Review of Psychology, 58, 25-45.CrossRefPubMedGoogle Scholar
  33. Mason, M. F., Banfield, J. F., & Macrae, C. N. (2004). Thinking about actions: The neural substrates of person knowledge. Cerebral Cortex, 14(2), 209-214.CrossRefPubMedGoogle Scholar
  34. Mason, R. A., & Just, M. A. (2009). The Role of the Theory-of-Mind Cortical Network in the Comprehension of Narratives. Language and Linguistics Compass, 3(1), 157-174.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mitchell, J. P., Heatherton, T. F., & Macrae, C. N. (2002). Distinct neural systems subserve person and object knowledge. Proceedings of the National Academy of Sciences of the United States of America, 99(23), 15238-15243.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nichols, T., Brett, M., Andersson, J., Wager, T., & Poline, J. B. (2005). Valid conjunction inference with the minimum statistic. Neuroimage, 25(3), 653-660.CrossRefPubMedGoogle Scholar
  37. Olson, I. R., McCoy, D., Klobusicky, E., & Ross, L. A. (2013). Social cognition and the anterior temporal lobes: a review and theoretical framework. Social Cognitive and Affective Neuroscience, 8(2), 123-133.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Premack, D., & Woodruff, G. (1978). Does the Chimpanzee Have a Theory of Mind. Behavioral and Brain Sciences, 1(4), 515-526.CrossRefGoogle Scholar
  39. Price, A. R., Bonner, M. F., Peelle, J. E., & Grossman, M. (2015). Converging Evidence for the Neuroanatomic Basis of Combinatorial Semantics in the Angular Gyrus. Journal of Neuroscience, 35(7), 3276-3284.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rice, G. E., Ralph, M. A. L., & Hoffman, P. (2015). The Roles of Left Versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-analysis of 97 Functional Neuroimaging Studies. Cerebral Cortex, 25(11), 4374-4391.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Ross, L. A., & Olson, I. R. (2010). Social cognition and the anterior temporal lobes. Neuroimage, 49(4), 3452-3462.CrossRefPubMedGoogle Scholar
  42. Saxe, R. (2010). The right temporo-parietal junction: a specific brain region for thinking about thoughts. In Handbook of Theory of Mind, ed. A Leslie, T German, pp. 1–35. Hove: Psychology PressGoogle Scholar
  43. Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people - The role of the temporo-parietal junction in "theory of mind". Neuroimage, 19(4), 1835-1842.CrossRefPubMedGoogle Scholar
  44. Saxe, R., & Wexler, A. (2005). Making sense of another mind: The role of the right temporo-parietal junction. Neuropsychologia, 43(10), 1391-1399.CrossRefPubMedGoogle Scholar
  45. Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience and Biobehavioral Reviews, 42, 9-34.CrossRefPubMedGoogle Scholar
  46. Sitnikova, T., Holcomb, P. J., Kiyonaga, K. A., & Kuperberg, G. R. (2008). Two neurocognitive mechanisms of semantic integration during the comprehension of visual real-world events. Journal of cognitive neuroscience, 20(11), 2037-2057.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Spunt, R. P., & Adolphs, R. (2014). Validating the Why/How contrast for functional MRI studies of Theory of Mind. Neuroimage, 99, 301-311.CrossRefPubMedGoogle Scholar
  48. St George, M., Kutas, M., Martinez, A., & Sereno, M. I. (1999). Semantic integration in reading: engagement of the right hemisphere during discourse processing. Brain, 122(7), 1317-1325.CrossRefPubMedGoogle Scholar
  49. Tamir, D. I., Thornton, M. A., Contreras, J. M., & Mitchell, J. P. (2016). Neural evidence that three dimensions organize mental state representation: Rationality, social impact, and valence. Proceedings of the National Academy of Sciences, 113(1), 194-199.CrossRefGoogle Scholar
  50. Troche, J., Crutch, S., & Reilly, J. (2014). Clustering, hierarchical organization, and the topography of abstract and concrete nouns. Frontiers in psychology, 5, 360.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Van Berkum, J. J. A., Hagoort, P., & Brown, C. M. (1999). Semantic integration in sentences and discourse: Evidence from the N400. Journal of cognitive neuroscience, 11(6), 657-671.CrossRefPubMedGoogle Scholar
  52. Van Berkum, J. J. A., Zwisterlood, P., Hagoort, P., & Brown, C. M. (2003). When and how do listeners relate a sentence to the wider discourse? Evidence from the N400 effect. Cognitive Brain Research, 17(3), 701-718.CrossRefPubMedGoogle Scholar
  53. Van Dijk, T. A., Kintsch, W., & Van Dijk, T. A. (1983). Strategies of discourse comprehension (pp. 11-12). New York: Academic Press.Google Scholar
  54. Xia, M. R., Wang, J. H., & He, Y. (2013). BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. Plos One, 8(7), e68910.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xu, J., Kemeny, S., Park, G., Frattali, C., & Braun, A. (2005). Language in context: emergent features of word, sentence, and narrative comprehension. Neuroimage, 25(3), 1002-1015.CrossRefPubMedGoogle Scholar
  56. Yan, C. G., & Zang, Y. F. (2010). DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. Frontiers in Systems Neuroscience, 4, 13.Google Scholar
  57. Yarkoni, T., Speer, N. K., & Zacks, J. M. (2008). Neural substrates of narrative comprehension and memory. Neuroimage, 41(4), 1408-1425.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., & Grafman, J. (2007). Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6430-6435.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Zhu, Z. D., Zhang, J. X., Wang, S. P., Xiao, Z. W., Huang, J., & Chen, H. C. (2009). Involvement of left inferior frontal gyrus in sentence-level semantic integration. Neuroimage, 47(2), 756-763.CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  • Nan Lin
    • 1
    • 2
  • Xiaohong Yang
    • 1
    • 2
  • Jing Li
    • 1
    • 2
  • Shaonan Wang
    • 3
    • 4
  • Huimin Hua
    • 1
    • 2
  • Yujun Ma
    • 5
  • Xingshan Li
    • 1
    • 2
  1. 1.CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyBeijingChina
  2. 2.Department of PsychologyUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.National Laboratory of Pattern RecognitionCASIABeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.School of Business AdministrationZhengzhou University of AeronauticsZhengzhouChina

Personalised recommendations