Advertisement

Cued for risk: Evidence for an incentive sensitization framework to explain the interplay between stress and anxiety, substance abuse, and reward uncertainty in disordered gambling behavior

  • Samantha N. Hellberg
  • Trinity I. Russell
  • Mike J. F. Robinson
Article

Abstract

Gambling disorder is an impairing condition confounded by psychiatric co-morbidity, particularly with substance use and anxiety disorders. Yet, our knowledge of the mechanisms that cause these disorders to coalesce remains limited. The Incentive Sensitization Theory suggests that sensitization of neural “wanting” pathways, which attribute incentive salience to rewards and their cues, is responsible for the excessive desire for drugs and cue-triggered craving. The resulting hyper-reactivity of the “wanting’ system is believed to heavily influence compulsive drug use and relapse. Notably, evidence for sensitization of the mesolimbic dopamine pathway has been seen across gambling and substance use, as well as anxiety and stress-related pathology, with stress playing a major role in relapse. Together, this evidence highlights a phenomenon known as cross-sensitization, whereby sensitization to stress, drugs, or gambling behaviors enhance the sensitivity and dopaminergic response to any of those stimuli. Here, we review the literature on how cue attraction and reward uncertainty may underlie gambling pathology, and examine how this framework may advance our understanding of co-mordidity with substance-use disorders (e.g., alcohol, nicotine) and anxiety disorders. We argue that reward uncertainty, as seen in slot machines and games of chance, increases dopaminergic activity in the mesolimbic pathway and enhances the incentive value of reward cues. We propose that incentive sensitization by reward uncertainty may interact with and predispose individuals to drug abuse and stress, creating a mechanism through which co-mordidity of these disorders may emerge.

Keywords

Addiction Gambling Anxiety Incentive Sensitization Nicotine Alcohol 

References

  1. Afifi, T. O., Nicholson, R., Martins, S. S., & Sareen, J. (2016). A Longitudinal Study of the Temporal Relation Between Problem Gambling and Mental and Substance Use Disorders Among Young Adults. The Canadian Journal of Psychiatry, 61(2), 102–111.  https://doi.org/10.1177/0706743715625950 PubMedCrossRefGoogle Scholar
  2. Allain, F., Minogianis, E.-A., Roberts, D. C. S., & Samaha, A.-N. (2015). How fast and how often: The pharmacokinetics of drug use are decisive in addiction. Neuroscience and Biobehavioral Reviews, 56, 166–179.  https://doi.org/10.1016/j.neubiorev.2015.06.012 PubMedCrossRefGoogle Scholar
  3. American Psychiatric Association. (2013). American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5®). (A. P. Association, Ed.). Arlington: American Psychiatric Association.Google Scholar
  4. Anselme, P. (2013). Dopamine, motivation, and the evolutionary significance of gambling-like behaviour. Behavioural Brain Research, 256C, 1–4.  https://doi.org/10.1016/j.bbr.2013.07.039 CrossRefGoogle Scholar
  5. Anselme, P., & Robinson, M. J. F. (2013). What motivates gambling behavior? Insight into dopamine's role. Frontiers in Behavioral Neuroscience, 7, 182.  https://doi.org/10.3389/fnbeh.2013.00182 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anselme, P., Robinson, M. J. F., & Berridge, K. C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioural Brain Research, 238, 53–61.  https://doi.org/10.1016/j.bbr.2012.10.006 PubMedCrossRefGoogle Scholar
  7. Antelman, S. M., Eichler, A. J., Black, C. A., & Kocan, D. (1980). Interchangeability of stress and amphetamine in sensitization. Science, 207(4428), 329–331.PubMedCrossRefGoogle Scholar
  8. Avena, N. M., & Hoebel, B. G. (2003). A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience, 122(1), 17–20.PubMedCrossRefGoogle Scholar
  9. Baker, L. K., Mao, D., Chi, H., Govind, A. P., Vallejo, Y. F., Iacoviello, M., et al. (2013). Intermittent nicotine exposure upregulates nAChRs in VTA dopamine neurons and sensitises locomotor responding to the drug. European Journal of Neuroscience, 37(6), 1004–1011.  https://doi.org/10.1111/ejn.12114 PubMedCrossRefGoogle Scholar
  10. Balfour, D. J. K. (2015a). The role of mesoaccumbens dopamine in nicotine dependence. (D. J. K. Balfour & M. R. Munafò, Eds.)The Neuropharmacology of Nicotine Dependence (Vol. 24, pp. 1–172). Cham: Current topics in behavioral neurosciences. doi:10.1007/978-3-319-13482-6_3Google Scholar
  11. Balfour, D. J. K. (2015b). The role of mesoaccumbens dopamine in nicotine dependence. Current Topics in Behavioral Neurosciences, 24(Chapter 3), 55–98.  https://doi.org/10.1007/978-3-319-13482-6_3 PubMedCrossRefGoogle Scholar
  12. Balodis, I. M., Kober, H., Worhunsky, P. D., Stevens, M. C., Pearlson, G. D., & Potenza, M. N. (2012). Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biological Psychiatry, 71(8), 749–757.  https://doi.org/10.1016/j.biopsych.2012.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2007). Threat-related attentional bias in anxious and nonanxious individuals: A meta-analytic study. Psychological Bulletin, 133(1), 1–24.  https://doi.org/10.1037/0033-2909.133.1.1 PubMedCrossRefGoogle Scholar
  14. Barrett, S. P., Collins, P., & Stewart, S. H. (2015). The acute effects of tobacco smoking and alcohol consumption on video-lottery terminal gambling. Pharmacology, Biochemistry, and Behavior, 130(C), 34–39.  https://doi.org/10.1016/j.pbb.2014.12.015 PubMedCrossRefGoogle Scholar
  15. Barrus, M. M., & Winstanley, C. A. (2016). Dopamine D3 Receptors Modulate the Ability of Win-Paired Cues to Increase Risky Choice in a Rat Gambling Task. Journal of Neuroscience, 36(3), 785–794.  https://doi.org/10.1523/JNEUROSCI.2225-15.2016 PubMedCrossRefGoogle Scholar
  16. Bartlett, E., Hallin, A., Chapman, B., & Angrist, B. (1997). Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology, 16(1), 77–82.  https://doi.org/10.1016/S0893-133X(96)00164-9 PubMedCrossRefGoogle Scholar
  17. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (1997). Deciding advantageously before knowing the advantageous strategy. Science, 275(5304), 1293–1295.PubMedCrossRefGoogle Scholar
  18. Belda, X., Fuentes, S., Daviu, N., Nadal, R., & Armario, A. (2015). Stress-induced sensitization: the hypothalamic–pituitary–adrenal axis and beyond. Stress, 18(3), 269–279.  https://doi.org/10.3109/10253890.2015.1067678 PubMedCrossRefGoogle Scholar
  19. Benowitz, N. L. (1996). Pharmacology of nicotine: addiction and therapeutics. Annual Review of Pharmacology and Toxicology, 36(1), 597–613.  https://doi.org/10.1146/annurev.pa.36.040196.003121 PubMedCrossRefGoogle Scholar
  20. Benwell, M. E., & Balfour, D. J. (1992). The effects of acute and repeated nicotine treatment on nucleus accumbens dopamine and locomotor activity. British Journal of Pharmacology, 105(4), 849–856.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bergamini, A., Turrina, C., Bettini, F., Toccagni, A., Valsecchi, P., Sacchetti, E., & Vita, A. (2018). At-risk gambling in patients with severe mental illness: Prevalence and associated features. Journal of Behavioral Addictions, 7(2), 348–354.  https://doi.org/10.1556/2006.7.2018.47 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Berridge, K. C. (2007). The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology, 191(3), 391–431.  https://doi.org/10.1007/s00213-006-0578-x PubMedCrossRefGoogle Scholar
  23. Berridge, K. C. (2010). Incentive Motivation and Incentive Salience (pp. 1–8). Elsevier.Google Scholar
  24. Berridge, K. C. (2012). From prediction error to incentive salience: mesolimbic computation of reward motivation. European Journal of Neuroscience, 35(7), 1124–1143.  https://doi.org/10.1111/j.1460-9568.2012.07990.x PubMedCrossRefGoogle Scholar
  25. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–369.PubMedCrossRefGoogle Scholar
  26. Berridge, K. C., & Robinson, T. E. (2003). Parsing reward. Trends in Neurosciences, 26(9), 507–513.  https://doi.org/10.1016/S0166-2236(03)00233-9 PubMedCrossRefGoogle Scholar
  27. Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: 'liking', “wanting,” and learning. Current Opinion in Pharmacology, 9(1), 65–73.  https://doi.org/10.1016/j.coph.2008.12.014 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Berridge, K. C., & Valenstein, E. S. (1991). What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behavioral Neuroscience, 105(1), 3–14.PubMedCrossRefGoogle Scholar
  29. Biback, C., & Zack, M. (2015). The Relationship Between Stress and Motivation in Pathological Gambling: a Focused Review and Analysis. Current Addiction Reports, 2(3), 230–239.  https://doi.org/10.1007/s40429-015-0064-9 CrossRefGoogle Scholar
  30. Blanco, C., Hanania, J., Petry, N. M., Wall, M. M., Wang, S., Jin, C. J., & Kendler, K. S. (2015). Towards a comprehensive developmental model of pathological gambling. Addiction, 110(8), 1340–1351.  https://doi.org/10.1111/add.12946 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Blanco, C., Hasin, D. S., Petry, N., Stinson, F. S., & Grant, B. F. (2006). Sex differences in subclinical and DSM-IV pathological gambling: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Psychological Medicine, 36(7), 943–953.  https://doi.org/10.1017/S0033291706007410 PubMedCrossRefGoogle Scholar
  32. Blaszczynski, A., & Nower, L. (2002). A pathways model of problem and pathological gambling. Addiction, 97(5), 487–499.  https://doi.org/10.1046/j.1360-0443.2002.00015.x PubMedCrossRefGoogle Scholar
  33. Boileau, I., Dagher, A., Leyton, M., Gunn, R. N., Baker, G. B., Diksic, M., & Benkelfat, C. (2006). Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Archives of General Psychiatry, 63(12), 1386–1395.  https://doi.org/10.1001/archpsyc.63.12.1386 PubMedCrossRefGoogle Scholar
  34. Boileau, I., Payer, D., Chugani, B., Lobo, D. S. S., Houle, S., Wilson, A. A., et al. (2014). In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Nature Publishing Group, 19(12), 1305–1313.  https://doi.org/10.1038/mp.2013.163 CrossRefGoogle Scholar
  35. Booij, L., Welfeld, K., Leyton, M., Dagher, A., Boileau, I., Sibon, I., et al. (2016). Dopamine cross-sensitization between psychostimulant drugs and stress in healthy male volunteers. Translational Psychiatry, 6(2), e740.  https://doi.org/10.1038/tp.2016.6
  36. Bracken, A. L., Chambers, R. A., Berg, S. A., Rodd, Z. A., & McBride, W. J. (2011). Nicotine exposure during adolescence enhances behavioral sensitivity to nicotine during adulthood in Wistar rats. Pharmacology, Biochemistry, and Behavior, 99(1), 87–93.  https://doi.org/10.1016/j.pbb.2011.04.008 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Bradford, D. E., Kaye, J. T., & Curtin, J. J. (2014a). Not just noise: individual differences in general startle reactivity predict startle response to uncertain and certain threat. Psychophysiology, 51(5), 407–411.  https://doi.org/10.1111/psyp.12193 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Bradford, D. E., Magruder, K. P., Korhumel, R. A., & Curtin, J. J. (2014b). Using the threat probability task to assess anxiety and fear during uncertain and certain threat. Journal of Visualized Experiments : JoVE, (91), 51905–e51905.  https://doi.org/10.3791/51905 CrossRefGoogle Scholar
  39. Bradford, D. E., Shapiro, B. L., & Curtin, J. J. (2013). How Bad Could It Be? Alcohol Dampens Stress Responses to Threat of Uncertain Intensity. Psychological Science, 24(12), 2541–2549.  https://doi.org/10.1177/0956797613499923 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Breese, G. R., Chu, K., Dayas, C. V., Funk, D., Knapp, D. J., Koob, G. F., et al. (2005). Stress enhancement of craving during sobriety: a risk for relapse. (Vol. 29, pp. 185–195). Presented at the Alcoholism, clinical and experimental research.Google Scholar
  41. Brevers, D., Bechara, A., Hermoye, L., Divano, L., Kornreich, C., Verbanck, P., & Noël, X. (2014a). Comfort for uncertainty in pathological gamblers: A fMRI study. Behavioural Brain Research, 278C, 262–270.  https://doi.org/10.1016/j.bbr.2014.09.026 CrossRefGoogle Scholar
  42. Brevers, D., Koritzky, G., Bechara, A., & Noël, X. (2014b). Cognitive processes underlying impaired decision-making under uncertainty in gambling disorder. Addictive Behaviors, 39(10), 1533–1536.  https://doi.org/10.1016/j.addbeh.2014.06.004 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Brielmaier, J., McDonald, C. G., & Smith, R. F. (2012). Effects of acute stress on acquisition of nicotine conditioned place preference in adolescent rats: a role for corticotropin-releasing factor 1 receptors. Psychopharmacology, 219(1), 73–82.  https://doi.org/10.1007/s00213-011-2378-1 PubMedCrossRefGoogle Scholar
  44. Buczek, Y., Lê, A. D., Wang, A., Stewart, J., & Shaham, Y. (1999). Stress reinstates nicotine seeking but not sucrose solution seeking in rats. Psychopharmacology, 144(2), 183–188.PubMedCrossRefGoogle Scholar
  45. Burke, A. R., & Miczek, K. A. (2014). Stress in adolescence and drugs of abuse in rodent models: role of dopamine, CRF, and HPA axis. Psychopharmacology, 231(8), 1557–1580.  https://doi.org/10.1007/s00213-013-3369-1 PubMedCrossRefGoogle Scholar
  46. Cadoni, C., & Di Chiara, G. (2000). Differential changes in accumbens shell and core dopamine in behavioral sensitization to nicotine. European Journal of Pharmacology, 387(3), R23–5.  https://doi.org/10.1016/S0014-2999(99)00843-2 PubMedCrossRefGoogle Scholar
  47. Caggiula, A. R., Donny, E. C., Palmatier, M. I., Liu, X., Chaudhri, N., & Sved, A. F. (2009). The role of nicotine in smoking: a dual-reinforcement model. Nebraska Symposium on Motivation. Nebraska Symposium on Motivation, 55, 91–109.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Carleton, R. N. (2012). The intolerance of uncertainty construct in the context of anxiety disorders: theoretical and practical perspectives. Expert Review of Neurotherapeutics, 12(8), 937–947.  https://doi.org/10.1586/ern.12.82 PubMedCrossRefGoogle Scholar
  49. Casey, K. F., Benkelfat, C., Young, S. N., & Leyton, M. (2006). Lack of effect of acute dopamine precursor depletion in nicotine-dependent smokers. European Neuropsychopharmacology, 16(7), 512–520.  https://doi.org/10.1016/j.euroneuro.2006.02.002 PubMedCrossRefGoogle Scholar
  50. Castner, S. A., & Goldman-Rakic, P. S. (1999). Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology, 20(1), 10–28.  https://doi.org/10.1016/S0893-133X(98)00050-5 PubMedCrossRefGoogle Scholar
  51. Chester, J. A., Barrenha, G. D., Hughes, M. L., & Keuneke, K. J. (2008). Age- and Sex-Dependent Effects of Footshock Stress on Subsequent Alcohol Drinking and Acoustic Startle Behavior in Mice Selectively Bred for High-Alcohol Preference. Alcoholism, Clinical and Experimental Research, 32(10), 1782–1794.  https://doi.org/10.1111/j.1530-0277.2008.00763.x PubMedPubMedCentralCrossRefGoogle Scholar
  52. Chou, K.-L., & Afifi, T. O. (2011). Disordered (Pathologic or Problem) Gambling and Axis I Psychiatric Disorders: Results From the National Epidemiologic Survey on Alcohol and Related Conditions. American Journal of Epidemiology, 173(11), 1289–1297.  https://doi.org/10.1093/aje/kwr017 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Clark, L., Lawrence, A. J., Astley-Jones, F., & Gray, N. (2009). Gambling Near-Misses Enhance Motivation to Gamble and Recruit Win-Related Brain Circuitry. Neuron, 61(3), 481–490.  https://doi.org/10.1016/j.neuron.2008.12.031 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Clarke, P. B. S., & Kumar, R. (1983). The effects of nicotine on locomotor activity in non-tolerant and tolerant rats. British Journal of Pharmacology, 78(2), 329–337.  https://doi.org/10.1111/j.1476-5381.1983.tb09398.x PubMedPubMedCentralCrossRefGoogle Scholar
  55. Coffey, S. F., Stasiewicz, P. R., Hughes, P. M., & Brimo, M. L. (2006). Trauma-focused imaginal exposure for individuals with co-mordid posttraumatic stress disorder and alcohol dependence: Revealing mechanisms of alcohol craving in a cue reactivity paradigm. Psychology of Addictive Behaviors, 20(4), 425–435.  https://doi.org/10.1037/0893-164X.20.4.425 PubMedCrossRefGoogle Scholar
  56. Conway, K. P., Compton, W., Stinson, F. S., & Grant, B. F. (2006). Lifetime co-mordidity of DSM-IV mood and anxiety disorders and specific drug use disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. The Journal of Clinical Psychiatry, 67(2), 247–257.PubMedCrossRefGoogle Scholar
  57. Corrigall, W. A., Coen, K. M., & Adamson, K. L. (1994). Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area. Brain Research, 653(1), 278–284.  https://doi.org/10.1016/0006-8993(94)90401-4 PubMedCrossRefGoogle Scholar
  58. Cortright, J. J., Sampedro, G. R., Neugebauer, N. M., & Vezina, P. (2012). Previous Exposure to Nicotine Enhances the Incentive Motivational Effects of Amphetamine via Nicotine-Associated Contextual Stimuli. Neuropsychopharmacology, 37(10), 2277.  https://doi.org/10.1038/npp.2012.80 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Costikyan, G. (2013). Uncertainty in Games. Cambridge: MIT Press.Google Scholar
  60. Cox, W. M., Hogan, L. M., Kristian, M. R., & Race, J. H. (2002). Alcohol attentional bias as a predictor of alcohol abusers' treatment outcome. Drug and Alcohol Dependence, 68(3), 237–243.  https://doi.org/10.1016/S0376-8716(02)00219-3 PubMedCrossRefGoogle Scholar
  61. Cox, W. M., Pothos, E. M., & Hosier, S. G. (2007). Cognitive-motivational predictors of excessive drinkers' success in changing. Psychopharmacology, 192(4), 499–510.  https://doi.org/10.1007/s00213-007-0736-9 PubMedCrossRefGoogle Scholar
  62. Crockford, D. N., & el-Guebaly, N. (1998). Psychiatric co-mordidity in pathological gambling: a critical review. The Canadian Journal of Psychiatry, 43(1), 43–50.  https://doi.org/10.1177/070674379804300104 PubMedCrossRefGoogle Scholar
  63. Cruz, F. C., Marin, M. T., Leão, R. M., & Planeta, C. S. (2011). Stress-induced cross-sensitization to amphetamine is related to changes in the dopaminergic system. Journal of Neural Transmission, 119(4), 415–424.  https://doi.org/10.1007/s00702-011-0720-8 PubMedCrossRefGoogle Scholar
  64. Cuadra, G., Zurita, A., Lacerra, C., & Molina, V. (1999). Chronic stress sensitizes frontal cortex dopamine release in response to a subsequent novel stressor: reversal by naloxone. Brain Research Bulletin, 48(3), 303–308.  https://doi.org/10.1016/S0361-9230(98)00179-8 PubMedCrossRefGoogle Scholar
  65. Cunningham, S. T., & Kelley, A. E. (1992). Evidence for opiate-dopamine cross-sensitization in nucleus accumbens: studies of conditioned reward. Brain Research Bulletin, 29(5), 675–680.PubMedCrossRefGoogle Scholar
  66. Cunningham-Williams, R. M., Grucza, R. A., Cottler, L. B., Womack, S. B., Books, S. J., Przybeck, T. R., et al. (2005). Prevalence and predictors of pathological gambling: results from the St. Louis personality, health and lifestyle (SLPHL) study. Journal of Psychiatric Research, 39(4), 377–390.  https://doi.org/10.1016/j.jpsychires.2004.09.002 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Dallman, M. F. (2010). Stress-induced obesity and the emotional nervous system. Trends in Endocrinology and Metabolism: TEM, 21(3), 159–165.  https://doi.org/10.1016/j.tem.2009.10.004 PubMedCrossRefGoogle Scholar
  68. Desai, R. A., & Potenza, M. N. (2008). Gender differences in the associations between past-year gambling problems and psychiatric disorders. Social Psychiatry and Psychiatric Epidemiology, 43(3), 173–183.  https://doi.org/10.1007/s00127-007-0283-z PubMedCrossRefGoogle Scholar
  69. Di Chiara, G., & Imperato, A. (1988). Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences, 85(14), 5274–5278.CrossRefGoogle Scholar
  70. Di Nicola, M., Tedeschi, D., De Risio, L., Pettorruso, M., Martinotti, G., Ruggeri, F., et al. (2015). Co-occurrence of alcohol use disorder and behavioral addictions: relevance of impulsivity and craving. Drug and Alcohol Dependence, 148, 118–125.  https://doi.org/10.1016/j.drugalcdep.2014.12.028 PubMedCrossRefGoogle Scholar
  71. Didone, V., Masson, S., Quoilin, C., Seutin, V., & Quertemont, E. (2014). Correlation between ethanol behavioral sensitization and midbrain dopamine neuron reactivity to ethanol. Addiction Biology, 21(2), 387–396.  https://doi.org/10.1111/adb.12216 PubMedCrossRefGoogle Scholar
  72. Dieterich, R., Endrass, T., & Kathmann, N. (2017). Uncertainty increases neural indices of attention in obsessive-compulsive disorder. Depression and Anxiety, 34(11), 1018–1028.  https://doi.org/10.1002/da.22655 PubMedCrossRefGoogle Scholar
  73. Dietz, D. M., Tapocik, J., Gaval-Cruz, M., & Kabbaj, M. (2005). Dopamine transporter, but not tyrosine hydroxylase, may be implicated in determining individual differences in behavioral sensitization to amphetamine. Physiology & Behavior, 86(3), 347–355.  https://doi.org/10.1016/j.physbeh.2005.08.005 CrossRefGoogle Scholar
  74. Dixon, M. J., Graydon, C., Harrigan, K. A., Wojtowicz, L., Siu, V., & Fugelsang, J. A. (2014). The allure of multi-line games in modern slot machines. Addiction, 109(11), 1920–1928.  https://doi.org/10.1111/add.12675 PubMedCrossRefGoogle Scholar
  75. Dodd, M. L., Klos, K. J., Bower, J. H., Geda, Y. E., Josephs, K. A., & Ahlskog, J. E. (2005). Pathological gambling caused by drugs used to treat Parkinson disease. Archives of Neurology, 62(9), 1377–1381.  https://doi.org/10.1001/archneur.62.9.noc50009 PubMedCrossRefGoogle Scholar
  76. Dube, S. R., Anda, R. F., Felitti, V. J., Edwards, V. J., & Croft, J. B. (2002). Adverse childhood experiences and personal alcohol abuse as an adult. Addictive Behaviors, 27(5), 713–725.  https://doi.org/10.1016/S0306-4603(01)00204-0 PubMedCrossRefGoogle Scholar
  77. Dube, S. R., Miller, J. W., Brown, D. W., Giles, W. H., Felitti, V. J., Dong, M., & Anda, R. F. (2006). Adverse childhood experiences and the association with ever using alcohol and initiating alcohol use during adolescence. The Journal of Adolescent Health : Official Publication of the Society for Adolescent Medicine, 38(4), 444.e1–10.  https://doi.org/10.1016/j.jadohealth.2005.06.006 CrossRefGoogle Scholar
  78. Edens, E. L., & Rosenheck, R. A. (2011). Rates and Correlates of Pathological Gambling Among VA Mental Health Service Users. Journal of Gambling Studies / Co-Sponsored by the National Council on Problem Gambling and Institute for the Study of Gambling and Commercial Gaming, 28(1), 1–11.  https://doi.org/10.1007/s10899-011-9239-z CrossRefGoogle Scholar
  79. Eisener-Dorman, A. F., Grabowski-Boase, L., & Tarantino, L. M. (2011). Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice. Behavioral and Brain Functions : BBF, 7(1), 29.  https://doi.org/10.1186/1744-9081-7-29 PubMedCrossRefGoogle Scholar
  80. el-Guebaly, N., Patten, S. B., Currie, S., Williams, J. V. A., Beck, C. A., Maxwell, C. J., & Wang, J. L. (2006). Epidemiological Associations between Gambling Behavior, Substance Use & Mood and Anxiety Disorders. Journal of Gambling Studies / Co-Sponsored by the National Council on Problem Gambling and Institute for the Study of Gambling and Commercial Gaming, 22(3), 275–287.  https://doi.org/10.1007/s10899-006-9016-6 CrossRefGoogle Scholar
  81. Elman, I., Becerra, L., Tschibelu, E., Yamamoto, R., George, E., & Borsook, D. (2012). Yohimbine-induced amygdala activation in pathological gamblers: a pilot study. PloS One, 7(2), e31118.  https://doi.org/10.1371/journal.pone.0031118 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Elman, I., Tschibelu, E., & Borsook, D. (2010). Psychosocial stress and its relationship to gambling urges in individuals with pathological gambling. The American Journal on Addictions, 19(4), 332–339.  https://doi.org/10.1111/j.1521-0391.2010.00055.x PubMedCrossRefGoogle Scholar
  83. Enoch, M.-A. (2011). The role of early life stress as a predictor for alcohol and drug dependence. Psychopharmacology, 214(1), 17–31.  https://doi.org/10.1007/s00213-010-1916-6 PubMedCrossRefGoogle Scholar
  84. Evans, A. H., Lawrence, A. D., Cresswell, S. A., Katzenschlager, R., & Lees, A. J. (2010). Compulsive use of dopaminergic drug therapy in Parkinson's disease: reward and anti-reward. Movement Disorders : Official Journal of the Movement Disorder Society, 25(7), 867–876.  https://doi.org/10.1002/mds.22898 CrossRefGoogle Scholar
  85. Evans, A. H., Pavese, N., Lawrence, A. D., Tai, Y. F., Appel, S., Doder, M., et al. (2006). Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Annals of Neurology, 59(5), 852–858.  https://doi.org/10.1002/ana.20822
  86. Felsher, J. R., Derevensky, J. L., & Gupta, R. (2004). Lottery playing amongst youth: implications for prevention and social policy. Journal of Gambling Studies, 20(2), 127–153.  https://doi.org/10.1023/B:JOGS.0000022306.72513.7c PubMedCrossRefGoogle Scholar
  87. Ferland, J.-M. N., & Winstanley, C. A. (2016). Risk-preferring rats make worse decisions and show increased incubation of craving after cocaine self-administration. Addiction Biology, 22(4), 991–1001.  https://doi.org/10.1111/adb.12388 PubMedCrossRefGoogle Scholar
  88. Ferrario, C. R., Gorny, G., Crombag, H. S., Li, Y., Kolb, B., & Robinson, T. E. (2005). Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biological Psychiatry, 58(9), 751–759.  https://doi.org/10.1016/j.biopsych.2005.04.046 PubMedCrossRefGoogle Scholar
  89. Ferrario, C. R., & Robinson, T. E. (2007). Amphetamine pretreatment accelerates the subsequent escalation of cocaine self-administration behavior. European Neuropsychopharmacology, 17(5), 352–357.  https://doi.org/10.1016/j.euroneuro.2006.08.005 PubMedCrossRefGoogle Scholar
  90. Fiorillo, C. D. (2011). Transient activation of midbrain dopamine neurons by reward risk. Neuroscience, 197, 162–171.  https://doi.org/10.1016/j.neuroscience.2011.09.037 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–1902.  https://doi.org/10.1126/science.1077349 PubMedCrossRefGoogle Scholar
  92. Fischman, M. W., & Foltin, R. W. (1992). Self-administration of cocaine by humans: a laboratory perspective. Ciba Foundation Symposium, 166, 165–180.PubMedGoogle Scholar
  93. Fox, H. C., Bergquist, K. L., Hong, K.-I., & Sinha, R. (2007). Stress-induced and alcohol cue-induced craving in recently abstinent alcohol-dependent individuals. Alcoholism, Clinical and Experimental Research, 31(3), 395–403.  https://doi.org/10.1111/j.1530-0277.2006.00320.x PubMedCrossRefGoogle Scholar
  94. Franken, I. H., de Haan, H. A., van der Meer, C. W., Haffmans, P. M., & Hendriks, V. M. (1999). Cue reactivity and effects of cue exposure in abstinent posttreatment drug users. Journal of Substance Abuse Treatment, 16(1), 81–85.  https://doi.org/10.1016/S0740-5472(98)00004-X
  95. Garcia-Keller, C., Martinez, S. A., Esparza, M. A., Bollati, F., Kalivas, P. W., & Cancela, L. M. (2013). Cross-sensitization between cocaine and acute restraint stress is associated with sensitized dopamine but not glutamate release in the nucleus accumbens. European Journal of Neuroscience, 37(6), 982–995.  https://doi.org/10.1111/ejn.12121 PubMedCrossRefGoogle Scholar
  96. Gerstein, D. R., Hoffmann, J. P., & Larison, C. (1999). Gambling impact and behavior study: Report to the national gambling impact study commission.Google Scholar
  97. Giddens, J. L., Stefanovics, E., Pilver, C. E., Desai, R., & Potenza, M. N. (2012). Pathological gambling severity and co-occurring psychiatric disorders in individuals with and without anxiety disorders in a nationally representative sample. Psychiatry Research, 199(1), 58–64.  https://doi.org/10.1016/j.psychres.2012.03.052 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Gorka, S. M., Nelson, B. D., Phan, K. L., & Shankman, S. A. (2016). Intolerance of uncertainty and insula activation during uncertain reward. Cognitive, Affective & Behavioral Neuroscience, 16(5), 929–939.  https://doi.org/10.3758/s13415-016-0443-2 CrossRefGoogle Scholar
  99. Goudriaan, A. E., Yucel, M., & van Holst, R. J. (2014). Getting a grip on problem gambling: What can neuroscience tell us? Frontiers in Behavioral Neuroscience, 1–29.Google Scholar
  100. Govind, A. P., Vezina, P., & Green, W. N. (2009). Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochemical Pharmacology, 78(7), 756–765.  https://doi.org/10.1016/j.bcp.2009.06.011 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Grant, B. F., Hasin, D. S., Chou, S. P., Stinson, F. S., & Dawson, D. A. (2004a). Nicotine dependence and psychiatric disorders in the United States: results from the national epidemiologic survey on alcohol and related conditions. Archives of General Psychiatry, 61(11), 1107–1115.  https://doi.org/10.1001/archpsyc.61.11.1107 PubMedCrossRefGoogle Scholar
  102. Grant, B. F., Stinson, F. S., Dawson, D. A., Chou, S. P., Dufour, M. C., Compton, W., et al. (2004b). Prevalence and co-occurrence of substance-use disorders and independent mood and anxiety disorders: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Archives of General Psychiatry, 61(8), 807–816.  https://doi.org/10.1001/archpsyc.61.8.807 PubMedCrossRefGoogle Scholar
  103. Grant, J. E., & Potenza, M. N. (2005). Tobacco Use and Pathological Gambling. Annals of Clinical Psychiatry, 17(4).  https://doi.org/10.3109/10401230500295370
  104. Grant, J. E., Williams, K. A., & Kim, S. W. (2006). Update on pathological gambling. Current Psychiatry Reports, 8(1), 53–58.PubMedCrossRefGoogle Scholar
  105. Grant, L. D., & Bowling, A. C. (2015). Gambling Attitudes and Beliefs Predict Attentional Bias in Non-problem Gamblers. Journal of Gambling Studies / Co-Sponsored by the National Council on Problem Gambling and Institute for the Study of Gambling and Commercial Gaming, 31(4), 1487–1503.  https://doi.org/10.1007/s10899-014-9468-z CrossRefGoogle Scholar
  106. Green, C. L., Nahhas, R. W., Scoglio, A. A., & Elman, I. (2017). Post-traumatic stress symptoms in pathological gambling: Potential evidence of anti-reward processes. Journal of Behavioral Addictions, 6(1), 98–101.  https://doi.org/10.1556/2006.6.2017.006 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Green, J. G., McLaughlin, K. A., Berglund, P. A., Gruber, M. J., Sampson, N. A., Zaslavsky, A. M., & Kessler, R. C. (2010). Childhood adversities and adult psychiatric disorders in the national co-mordidity survey replication I: associations with first onset of DSM-IV disorders. Archives of General Psychiatry, 67(2), 113–123.  https://doi.org/10.1001/archgenpsychiatry.2009.186 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Griffiths, M. (1993). Fruit machine gambling: The importance of structural characteristics. Journal of Gambling Studies, 9(2), 101–120.  https://doi.org/10.1007/BF01014863 CrossRefGoogle Scholar
  109. Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14(7), 488–501.  https://doi.org/10.1038/nrn3524 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Hasin, D. S., Stinson, F. S., Ogburn, E., & Grant, B. F. (2007). Prevalence, correlates, disability, and co-mordidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Archives of General Psychiatry, 64(7), 830–842.  https://doi.org/10.1001/archpsyc.64.7.830 PubMedCrossRefGoogle Scholar
  111. Heeren, A., Peschard, V., & Philippot, P. (2011). The Causal Role of Attentional Bias for Threat Cues in Social Anxiety: A Test on a Cyber-Ostracism Task. Cognitive Therapy and Research, 36(5), 512–521.  https://doi.org/10.1007/s10608-011-9394-7 CrossRefGoogle Scholar
  112. Hefner, K. R., Moberg, C. A., Hachiya, L. Y., & Curtin, J. J. (2013). Alcohol stress response dampening during imminent versus distal, uncertain threat. Journal of Abnormal Psychology, 122(3), 756–769.  https://doi.org/10.1037/a0033407 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Heinz, A., Siessmeier, T., Wrase, J., Hermann, D., Klein, S., Grüsser-Sinopoli, S. M., et al. (2014). Correlation Between Dopamine D2 Receptors in the Ventral Striatum and Central Processing of Alcohol Cues and Craving. American Journal of Psychiatry, 161(10), 1783–1789.  https://doi.org/10.1176/ajp.161.10.1783 CrossRefGoogle Scholar
  114. Hellberg, S. N., Levit, J. D., & Robinson, M. J. F. (2018). Under the influence: Effects of adolescent ethanol exposure and anxiety on motivation for uncertain gambling-like cues in male and female rats. Behavioural Brain Research, 337, 17–33.  https://doi.org/10.1016/j.bbr.2017.09.036 PubMedCrossRefGoogle Scholar
  115. Hickey, C., & Peelen, M. V. (2015). Neural Mechanisms of Incentive Salience in Naturalistic Human Vision. Neuron, 85(3), 512–518.  https://doi.org/10.1016/j.neuron.2014.12.049 PubMedCrossRefGoogle Scholar
  116. Hobbs, M., Remington, B., & Glautier, S. (2005). Dissociation of wanting and liking for alcohol in humans: a test of the incentive-sensitisation theory. Psychopharmacology, 178(4), 493–499.  https://doi.org/10.1007/s00213-004-2026-0 PubMedCrossRefGoogle Scholar
  117. Holly, E. N., Shimamoto, A., DeBold, J. F., & Miczek, K. A. (2012). Sex differences in behavioral and neural cross-sensitization and escalated cocaine taking as a result of episodic social defeat stress in rats. Psychopharmacology, 224(1), 179–188.  https://doi.org/10.1007/s00213-012-2846-2 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Hønsi, A., Mentzoni, R. A., Molde, H., & Pallesen, S. (2012). Attentional Bias in Problem Gambling: A Systematic Review. Journal of Gambling Studies / Co-Sponsored by the National Council on Problem Gambling and Institute for the Study of Gambling and Commercial Gaming, 29(3), 359–375.  https://doi.org/10.1007/s10899-012-9315-z CrossRefGoogle Scholar
  119. Horger, B. A., Giles, M. K., & Schenk, S. (1992). Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology, 107(2-3), 271–276.PubMedCrossRefGoogle Scholar
  120. Hoshaw, B. A., & Lewis, M. J. (2001). Behavioral sensitization to ethanol in rats: evidence from the Sprague-Dawley strain. Pharmacology, Biochemistry, and Behavior, 68(4), 685–690.PubMedCrossRefGoogle Scholar
  121. Hudson, A., Olatunji, B. O., Gough, K., Yi, S., & Stewart, S. H. (2016). Eye on the Prize: High-Risk Gamblers Show Sustained Selective Attention to Gambling Cues. Journal of Gambling Issues, 34, 100–119.  https://doi.org/10.4309/jgi.2016.34.6 CrossRefGoogle Scholar
  122. Hynes, T. J., Thomas, C. S., Zumbusch, A. S., Samson, A., Petriman, I., Mrdja, U., et al. (2017). Early life adversity potentiates expression of addiction-related traits. Progress in Neuro-Psychopharmacology & Biological Psychiatry.  https://doi.org/10.1016/j.pnpbp.2017.09.005
  123. Isomura, T., Suzuki, J., & Murai, T. (2014). Paradise Lost: The relationships between neurological and psychological changes in nicotine-dependent patients. Addiction Research & Theory, 22(2), 158–165.  https://doi.org/10.3109/16066359.2013.793312 CrossRefGoogle Scholar
  124. Janes, A. C., Pizzagalli, D. A., Richardt, S., deB Frederick, B., Chuzi, S., Pachas, G., et al. (2010). Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biological Psychiatry, 67(8), 722–729.  https://doi.org/10.1016/j.biopsych.2009.12.034 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Joutsa, J., Johansson, J., Niemelä, S., Ollikainen, A., Hirvonen, M. M., Piepponen, P., et al. (2012). Mesolimbic dopamine release is linked to symptom severity in pathological gambling. NeuroImage, 60(4), 1992–1999.  https://doi.org/10.1016/j.neuroimage.2012.02.006 PubMedCrossRefGoogle Scholar
  126. Kausch, O., Rugle, L., & Rowland, D. Y. (2006). Lifetime histories of trauma among pathological gamblers. The American Journal on Addictions, 15(1), 35–43.  https://doi.org/10.1080/10550490500419045 PubMedCrossRefGoogle Scholar
  127. Kennedy, S. H., Welsh, B. R., Fulton, K., Soczynska, J. K., McIntyre, R. S., O'Donovan, C., et al. (2010). Frequency and correlates of gambling problems in outpatients with major depressive disorder and bipolar disorder. The Canadian Journal of Psychiatry, 55(9), 568–576.  https://doi.org/10.1177/070674371005500905 PubMedCrossRefGoogle Scholar
  128. Kessler, R. C., Chiu, W. T., Demler, O., & Walters, E. E. (2005). Prevalence, Severity, and Comorbidity of 12-Month DSM-IV Disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62(6), 617–627.  https://doi.org/10.1001/archpsyc.62.6.617 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Kessler, R. C., Hwang, I., LaBrie, R., Petukhova, M., Sampson, N. A., Winters, K. C., & Shaffer, H. J. (2008). DSM-IV pathological gambling in the National Comorbidity Survey Replication. Psychological Medicine, 38(9), 1351–1360.  https://doi.org/10.1017/S0033291708002900 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Kessler, R. C., McGonagle, K. A., Zhao, S., Nelson, C. B., Hughes, M., Eshleman, S., et al. (1994). Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Archives of General Psychiatry, 51(1), 8–19.PubMedCrossRefGoogle Scholar
  131. Kim, W. Y., Cho, B. R., Kwak, M. J., & Kim, J.-H. (2017). Interaction between trait and housing condition produces differential decision-making toward risk choice in a rat gambling task. Scientific Reports, 7(1), 5718.  https://doi.org/10.1038/s41598-017-06408-4 PubMedPubMedCentralCrossRefGoogle Scholar
  132. King, D. L., Delfabbro, P. H., Zwaans, T., & Kaptsis, D. (2013). Clinical features and axis I comorbidity of Australian adolescent pathological Internet and video game users. Australian & New Zealand Journal of Psychiatry, 47(11), 1058–1067.  https://doi.org/10.1177/0004867413491159
  133. King, A. C., Hasin, D., O'Connor, S. J., McNamara, P. J., & Cao, D. (2016). A Prospective 5-Year Re-examination of Alcohol Response in Heavy Drinkers Progressing in Alcohol Use Disorder. Biological Psychiatry, 79(6), 489–498.  https://doi.org/10.1016/j.biopsych.2015.05.007 PubMedCrossRefGoogle Scholar
  134. Kluen, L. M., Agorastos, A., Wiedemann, K., & Schwabe, L. (2017). Cortisol boosts risky decision-making behavior in men but not in women. Psychoneuroendocrinology, 84, 181–189.  https://doi.org/10.1016/j.psyneuen.2017.07.240 PubMedCrossRefGoogle Scholar
  135. Koot, S., Baars, A., Hesseling, P., van den Bos, R., & Joëls, M. (2013). Time-dependent effects of corticosterone on reward-based decision-making in a rodent model of the Iowa Gambling Task. Neuropharmacology, 70, 306–315.  https://doi.org/10.1016/j.neuropharm.2013.02.008 PubMedCrossRefGoogle Scholar
  136. Krain, A. L., Hefton, S., Pine, D. S., Ernst, M., Castellanos, F. X., Klein, R. G., & Milham, M. P. (2006). An fMRI examination of developmental differences in the neural correlates of uncertainty and decision-making. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 47(10), 1023–1030.  https://doi.org/10.1111/j.1469-7610.2006.01677.x PubMedCrossRefGoogle Scholar
  137. Krank, M. D. (2003). Pavlovian conditioning with ethanol: sign-tracking (autoshaping), conditioned incentive, and ethanol self-administration. Alcoholism, Clinical and Experimental Research, 27(10), 1592–1598.  https://doi.org/10.1097/01.ALC.0000092060.09228.DE PubMedCrossRefGoogle Scholar
  138. Krank, M. D., O'Neill, S., Squarey, K., & Jacob, J. (2008). Goal- and signal-directed incentive: conditioned approach, seeking, and consumption established with unsweetened alcohol in rats. Psychopharmacology, 196(3), 397–405.  https://doi.org/10.1007/s00213-007-0971-0 PubMedCrossRefGoogle Scholar
  139. Krmpotich, T., Mikulich-Gilbertson, S., Sakai, J., Thompson, L., Banich, M. T., & Tanabe, J. (2015). Impaired Decision-Making, Higher Impulsivity, and Drug Severity in Substance Dependence and Pathological Gambling. Journal of Addiction Medicine, 9(4), 273–280.  https://doi.org/10.1097/ADM.0000000000000129 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Kushner, M., Thurus, P., Sletten, S., Frye, B., Abrams, K., Adson, D., et al. (2008). Urge to Gamble in a Simulated Gambling Environment. Journal of Gambling Studies / Co-Sponsored by the National Council on Problem Gambling and Institute for the Study of Gambling and Commercial Gaming, 24(2), 219–227.  https://doi.org/10.1007/s10899-007-9083-3
  141. Ladd, G. T., & Petry, N. M. (2003). A comparison of pathological gamblers with and without substance abuse treatment histories. Experimental and Clinical Psychopharmacology, 11(3), 202–209.  https://doi.org/10.1037/1064-1297.11.3.202 PubMedCrossRefGoogle Scholar
  142. Laviolette, S. R., & van der Kooy, D. (2004). The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour. Nature Reviews Neuroscience, 5(1), 55–65.  https://doi.org/10.1038/nrn1298 PubMedCrossRefGoogle Scholar
  143. Lê, A. D., Quan, B., Juzytch, W., Fletcher, P. J., Joharchi, N., & Shaham, Y. (1998). Reinstatement of alcohol-seeking by priming injections of alcohol and exposure to stress in rats. Psychopharmacology, 135(2), 169–174.PubMedCrossRefGoogle Scholar
  144. Ledgerwood, D. M., & Petry, N. M. (2006). Posttraumatic stress disorder symptoms in treatment-seeking pathological gamblers. Journal of Traumatic Stress, 19(3), 411–416.  https://doi.org/10.1002/jts.20123 PubMedCrossRefGoogle Scholar
  145. Ledgerwood, D. M., & Petry, N. M. (2010). Subtyping pathological gamblers based on impulsivity, depression, and anxiety. Psychology of Addictive Behaviors, 24(4), 680–688.  https://doi.org/10.1037/a0019906 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Leeman, R. F., & Potenza, M. N. (2012). Similarities and differences between pathological gambling and substance-use disorders: a focus on impulsivity and compulsivity. Psychopharmacology, 219(2), 469–490.  https://doi.org/10.1007/s00213-011-2550-7 PubMedCrossRefGoogle Scholar
  147. Leeman, R. F., & Potenza, M. N. (2013). A Targeted Review of the Neurobiology and Genetics of Behavioural Addictions: An Emerging Area of Research. The Canadian Journal of Psychiatry, 58(5), 260–273.  https://doi.org/10.1177/070674371305800503 PubMedCrossRefGoogle Scholar
  148. Leyton, M. (2007). Conditioned and sensitized responses to stimulant drugs in humans. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31(8), 1601–1613.  https://doi.org/10.1016/j.pnpbp.2007.08.027 CrossRefGoogle Scholar
  149. Leyton, M. (2014). What's deficient in reward deficiency? Journal of Psychiatry & Neuroscience, 39(5), 291–293.CrossRefGoogle Scholar
  150. Leyton, M., Boileau, I., Benkelfat, C., Diksic, M., Baker, G. B., & Dagher, A. (2002). Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology, 27(6), 1027–1035.  https://doi.org/10.1016/S0893-133X(02)00366-4 PubMedCrossRefGoogle Scholar
  151. Leyton, M., & Vezina, P. (2012). On cue: striatal ups and downs in addictions. Biological Psychiatry, 72(10), e21–2.  https://doi.org/10.1016/j.biopsych.2012.04.036 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Leyton, M., & Vezina, P. (2014). Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. Trends in Pharmacological Sciences, 35(6), 268–276.  https://doi.org/10.1016/j.tips.2014.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Linnet, J. (2014). Neurobiological underpinnings of reward anticipation and outcome evaluation in gambling disorder. Frontiers in Behavioral Neuroscience, 8, 100.  https://doi.org/10.3389/fnbeh.2014.00100/abstract PubMedPubMedCentralCrossRefGoogle Scholar
  154. Linnet, J., Møller, A., Peterson, E., Gjedde, A., & Doudet, D. (2011). Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction, 106(2), 383–390.  https://doi.org/10.1111/j.1360-0443.2010.03126.x PubMedCrossRefGoogle Scholar
  155. Linnet, J., Mouridsen, K., Peterson, E., Møller, A., Doudet, D. J., & Gjedde, A. (2012). Striatal dopamine release codes uncertainty in pathological gambling. Psychiatry Research, 204(1), 55–60.  https://doi.org/10.1016/j.pscychresns.2012.04.012 PubMedCrossRefGoogle Scholar
  156. Linnet, J., Peterson, E., Doudet, D. J., Gjedde, A., & Møller, A. (2010). Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatrica Scandinavica, 122(4), 326–333.  https://doi.org/10.1111/j.1600-0447.2010.01591.x PubMedCrossRefGoogle Scholar
  157. Lister, J. J., Milosevic, A., & Ledgerwood, D. M. (2015). Psychological Characteristics of Problem Gamblers With and Without Mood Disorder. The Canadian Journal of Psychiatry, 60(8), 369–376.  https://doi.org/10.1177/070674371506000806 PubMedCrossRefGoogle Scholar
  158. Littel, M., Franken, I. H. A., & Van Strien, J. W. (2009). Changes in the electroencephalographic spectrum in response to smoking cues in smokers and ex-smokers. Neuropsychobiology, 59(1), 43–50.  https://doi.org/10.1159/000205517 PubMedCrossRefGoogle Scholar
  159. Lopez, M. F., Doremus-Fitzwater, T. L., & Becker, H. C. (2011). Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice. Alcohol, 45(4), 355–364.  https://doi.org/10.1016/j.alcohol.2010.08.017 PubMedCrossRefGoogle Scholar
  160. Lorains, F. K., Cowlishaw, S., & Thomas, S. A. (2011). Prevalence of co-mordid disorders in problem and pathological gambling: systematic review and meta-analysis of population surveys. Addiction, 106(3), 490–498.  https://doi.org/10.1111/j.1360-0443.2010.03300.x PubMedCrossRefGoogle Scholar
  161. Madayag, A. C., Stringfield, S. J., Reissner, K. J., Boettiger, C. A., & Robinson, D. L. (2017). Sex and Adolescent Ethanol Exposure Influence Pavlovian Conditioned Approach. Alcoholism, Clinical and Experimental Research, 41(4), 846–856.  https://doi.org/10.1111/acer.13354 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Mahoney, A. E. J., & McEvoy, P. M. (2012). A transdiagnostic examination of intolerance of uncertainty across anxiety and depressive disorders. Cognitive Behaviour Therapy, 41(3), 212–222.  https://doi.org/10.1080/16506073.2011.622130 PubMedCrossRefGoogle Scholar
  163. Mantsch, J. R., Baker, D. A., Funk, D., Lê, A. D., & Shaham, Y. (2016). Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress. Neuropsychopharmacology, 41(1), 335–356.  https://doi.org/10.1038/npp.2015.142 PubMedCrossRefGoogle Scholar
  164. Marhe, R., Luijten, M., van de Wetering, B. J. M., Smits, M., & Franken, I. H. A. (2013). Individual Differences in Anterior Cingulate Activation Associated with Attentional Bias Predict Cocaine Use After Treatment. Neuropsychopharmacology, 38(6), 1085–1093.  https://doi.org/10.1038/npp.2013.7 PubMedPubMedCentralCrossRefGoogle Scholar
  165. Mascia, P., Neugebauer, N. M., Brown, J., Bubula, N., Nesbitt, K. M., Kennedy, R. T., & Vezina, P. (2018). Exposure to conditions of uncertainty promotes the pursuit of amphetamine. Neuropsychopharmacology, 1–7.  https://doi.org/10.1038/s41386-018-0099-4
  166. Matheny, K. B., & Weatherman, K. E. (1998). Predictors of smoking cessation and maintenance. Journal of Clinical Psychology, 54(2), 223–235.  https://doi.org/10.1002/(SICI)1097-4679(199802)54:2<223::AID-JCLP12>3.0.CO;2-L PubMedCrossRefGoogle Scholar
  167. Matsumoto, M., & Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459(7248), 837–841.  https://doi.org/10.1038/nature08028 PubMedPubMedCentralCrossRefGoogle Scholar
  168. McCormick, C. M., Robarts, D., Gleason, E., & Kelsey, J. E. (2004). Stress during adolescence enhances locomotor sensitization to nicotine in adulthood in female, but not male, rats. Hormones and Behavior, 46(4), 458–466.  https://doi.org/10.1016/j.yhbeh.2004.05.004 PubMedCrossRefGoogle Scholar
  169. McGrath, D. S., & Barrett, S. P. (2009). The co-mordidity of tobacco smoking and gambling: a review of the literature. Drug and Alcohol Review, 28(6), 676–681.  https://doi.org/10.1111/j.1465-3362.2009.00097.x PubMedCrossRefGoogle Scholar
  170. McGrath, D. S., Dorbeck, A., & Barrett, S. P. (2013). The influence of acutely administered nicotine on cue-induced craving for gambling in at-risk video lottery terminal gamblers who smoke. Behavioural Pharmacology, 24(2), 124–132.  https://doi.org/10.1097/FBP.0b013e32835f3cff PubMedCrossRefGoogle Scholar
  171. McGrath, D. S., Meitner, A., & Sears, C. R. (2018). The specificity of attentional biases by type of gambling: An eye-tracking study. PloS One, 13(1), e0190614–16.  https://doi.org/10.1371/journal.pone.0190614 PubMedPubMedCentralCrossRefGoogle Scholar
  172. McLaughlin, K. A., Conron, K. J., Koenen, K. C., & Gilman, S. E. (2010). Childhood adversity, adult stressful life events, and risk of past-year psychiatric disorder: a test of the stress sensitization hypothesis in a population-based sample of adults. Psychological Medicine, 40(10), 1647–1658.  https://doi.org/10.1017/S0033291709992121 PubMedCrossRefGoogle Scholar
  173. Mick, I., Myers, J., Ramos, A. C., Stokes, P. R. A., Erritzoe, D., Colasanti, A., et al. (2016). Blunted Endogenous Opioid Release Following an Oral Amphetamine Challenge in Pathological Gamblers. Neuropsychopharmacology, 41(7), 1742–1750.  https://doi.org/10.1038/npp.2015.340 PubMedCrossRefGoogle Scholar
  174. Miedl, S. F., Büchel, C., & Peters, J. (2014). Cue-Induced Craving Increases Impulsivity via Changes in Striatal Value Signals in Problem Gamblers. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 34(13), 4750–4755.  https://doi.org/10.1523/JNEUROSCI.5020-13.2014 CrossRefGoogle Scholar
  175. Miedl, S. F., Peters, J., & Büchel, C. (2012). Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Archives of General Psychiatry, 69(2), 177–186.  https://doi.org/10.1001/archgenpsychiatry.2011.1552 PubMedCrossRefGoogle Scholar
  176. Milosevic, A., & Ledgerwood, D. M. (2010). The subtyping of pathological gambling: a comprehensive review. Clinical Psychology Review, 30(8), 988–998.  https://doi.org/10.1016/j.cpr.2010.06.013 PubMedCrossRefGoogle Scholar
  177. Mogg, K., & Bradley, B. P. (2018). Anxiety and Threat-Related Attention: Cognitive-Motivational Framework and Treatment. Trends in Cognitive Sciences, 22(3), 225–240.  https://doi.org/10.1016/j.tics.2018.01.001 PubMedCrossRefGoogle Scholar
  178. Moghaddam, J. F., Yoon, G., Campos, M. D., & Fong, T. W. (2015). Social and behavioral problems among five gambling severity groups. Psychiatry Research, 230(2), 143–149.  https://doi.org/10.1016/j.psychres.2015.07.082 PubMedCrossRefGoogle Scholar
  179. Munafò, M. R., Mannie, Z. N., Cowen, P. J., Harmer, C. J., & McTavish, S. B. (2007). Effects of acute tyrosine depletion on subjective craving and selective processing of smoking-related cues in abstinent cigarette smokers. Journal of Psychopharmacology (Oxford, England), 21(8), 805–814.  https://doi.org/10.1177/0269881107077216 CrossRefGoogle Scholar
  180. Najavits, L. M., Meyer, T., Johnson, K. M., & Korn, D. (2011). Pathological gambling and posttraumatic stress disorder: a study of the co-morbidity versus each alone. Journal of Gambling Studies / Co-Sponsored by the National Council on Problem Gambling and Institute for the Study of Gambling and Commercial Gaming, 27(4), 663–683.  https://doi.org/10.1007/s10899-010-9230-0 CrossRefGoogle Scholar
  181. Nautiyal, K. M., Okuda, M., Hen, R., & Blanco, C. (2017). Gambling disorder: an integrative review of animal and human studies. Annals of the New York Academy of Sciences, 1394(1), 106–127.  https://doi.org/10.1111/nyas.13356 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Nelson, B. D., & Shankman, S. A. (2011). Does intolerance of uncertainty predict anticipatory startle responses to uncertain threat? International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology, 81(2), 107–115.  https://doi.org/10.1016/j.ijpsycho.2011.05.003 CrossRefGoogle Scholar
  183. Neugebauer, N. M., Cortright, J. J., Sampedro, G. R., & Vezina, P. (2014). Exposure to nicotine enhances its subsequent self-administration: contribution of nicotine-associated contextual stimuli. Behavioural Brain Research, 260, 155–161.  https://doi.org/10.1016/j.bbr.2013.11.035 PubMedCrossRefGoogle Scholar
  184. Noseworthy, T. J., & Finlay, K. (2009). A comparison of ambient casino sound and music: effects on dissociation and on perceptions of elapsed time while playing slot machines. Journal of Gambling Studies / Co-Sponsored by the National Council on Problem Gambling and Institute for the Study of Gambling and Commercial Gaming, 25(3), 331–342.  https://doi.org/10.1007/s10899-009-9136-x CrossRefGoogle Scholar
  185. Ostafin, B. D., Marlatt, G. A., & Troop-Gordon, W. (2010). Testing the incentive-sensitization theory with at-risk drinkers: wanting, liking, and alcohol consumption. Psychology of Addictive Behaviors, 24(1), 157–162.  https://doi.org/10.1037/a0017897 PubMedCrossRefGoogle Scholar
  186. Palmatier, M. I., Kellicut, M. R., Brianna Sheppard, A., Brown, R. W., & Robinson, D. L. (2014). The incentive amplifying effects of nicotine are reduced by selective and non-selective dopamine antagonists in rats. Pharmacology, Biochemistry, and Behavior, 126, 50–62.  https://doi.org/10.1016/j.pbb.2014.08.012 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Parhami, I., Mojtabai, R., Rosenthal, R. J., Afifi, T. O., & Fong, T. W. (2014). Gambling and the Onset of Comorbid Mental Disorders. Journal of Psychiatric Practice, 20(3), 207–219.  https://doi.org/10.1097/01.pra.0000450320.98988.7c PubMedCrossRefGoogle Scholar
  188. Park, C.-B., Park, S. M., Gwak, A. R., Sohn, B. K., Lee, J.-Y., Jung, H. Y., et al. (2015). The effect of repeated exposure to virtual gambling cues on the urge to gamble. Addictive Behaviors, 41, 61–64.  https://doi.org/10.1016/j.addbeh.2014.09.027 PubMedCrossRefGoogle Scholar
  189. Parke, J., & Griffiths, M. (2006). The Psychology of the Fruit Machine: The Role of Structural Characteristics (Revisited). International Journal of Mental Health and Addiction, 4(2), 151–179.  https://doi.org/10.1007/s11469-006-9014-z CrossRefGoogle Scholar
  190. Paulson, P. E., Camp, D. M., & Robinson, T. E. (1991). Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology, 103(4), 480–492.  https://doi.org/10.1007/BF02244248 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Peciña, S., & Berridge, K. C. (2013). Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered “wanting” for reward: entire core and medial shell mapped as substrates for PIT enhancement. The European Journal of Neuroscience, 37(9), 1529–1540.  https://doi.org/10.1111/ejn.12174 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Peciña, S., Cagniard, B., Berridge, K. C., Aldridge, J. W., & Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher “wanting” but not ‘liking’ for sweet rewards. The Journal of Neuroscience, 23(28), 9395–9402.PubMedCrossRefGoogle Scholar
  193. Peciña, S., Schulkin, J., & Berridge, K. C. (2006). Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biology, 4(1), 8.  https://doi.org/10.1186/1741-7007-4-8 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Perkins, K. A., & Grobe, J. E. (1992). Increased desire to smoke during acute stress. British Journal of Addiction, 87(7), 1037–1040.PubMedCrossRefGoogle Scholar
  195. Petry, N. M., & Armentano, C. (1999). Prevalence, assessment, and treatment of pathological gambling: a review. Psychiatric Services (Washington, D.C.), 50(8), 1021–1027.  https://doi.org/10.1176/ps.50.8.1021 CrossRefGoogle Scholar
  196. Petry, N. M., & Blanco, C. (2013). National gambling experiences in the United States: will history repeat itself? Addiction, 108(6), 1032–1037.  https://doi.org/10.1111/j.1360-0443.2012.03894.x
  197. Petry, N. M., & Kiluk, B. D. (2002). Suicidal ideation and suicide attempts in treatment-seeking pathological gamblers. The Journal of Nervous and Mental Disease, 190(7), 462–469.  https://doi.org/10.1097/01.NMD.0000022447.27689.96 PubMedPubMedCentralCrossRefGoogle Scholar
  198. Petry, N. M., & Oncken, C. (2002). Cigarette smoking is associated with increased severity of gambling problems in treatment-seeking gamblers. Addiction, 97(6), 745–753.PubMedCrossRefGoogle Scholar
  199. Petry, N. M., Stinson, F. S., & Grant, B. F. (2005). Comorbidity of DSM-IV Pathological Gambling and Other Psychiatric Disorders. The Journal of Clinical Psychiatry, 66(05), 564–574.  https://doi.org/10.4088/JCP.v66n0504 PubMedCrossRefGoogle Scholar
  200. Phillips, T. J. (1997). Behavior Genetics of Drug Sensitization. Critical Reviews&Trade; in Neurobiology, 11(1), 21–33.  https://doi.org/10.1615/CritRevNeurobiol.v11.i1.20 CrossRefGoogle Scholar
  201. Phillips, T. J., Huson, M., Gwiazdon, C., Kasch, S. B., & Shen, E. H. (1995). Effects of Acute and Repeated Ethanol Exposures on the Locomotor Activity of BXD Recombinant Inbred Mice. Alcoholism, Clinical and Experimental Research, 19(2), 269–278.  https://doi.org/10.1111/j.1530-0277.1995.tb01502.x PubMedCrossRefGoogle Scholar
  202. Phillips, T. J., Huson, M. G., & McKinnon, C. S. (1998). Localization of genes mediating acute and sensitized locomotor responses to cocaine in BXD/Ty recombinant inbred mice. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 18(8), 3023–3034.CrossRefGoogle Scholar
  203. Piazza, P. V., Deminiere, J. M., le Moal, M., & Simon, H. (1990). Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Research, 514(1), 22–26.PubMedCrossRefGoogle Scholar
  204. Possemato, K., Maisto, S. A., Wade, M., Barrie, K., McKenzie, S., Lantinga, L. J., & Ouimette, P. (2015). Ecological momentary assessment of PTSD symptoms and alcohol use in combat veterans. Psychology of Addictive Behaviors, 29(4), 894–905.  https://doi.org/10.1037/adb0000129 PubMedCrossRefGoogle Scholar
  205. Potenza, M. N. (2008). The Neurobiology of Pathological Gambling and Drug Addiction: An Overview and New Findings. Philosophical Transactions: Biological Sciences, 363(1507), 3181–3189.CrossRefGoogle Scholar
  206. Potenza, M. N., Fiellin, D. A., Heninger, G. R., Rounsaville, B. J., & Mazure, C. M. (2002). Gambling: an addictive behavior with health and primary care implications. Journal of General Internal Medicine, 17(9), 721–732.  https://doi.org/10.1046/j.1525-1497.2002.10812.x PubMedPubMedCentralCrossRefGoogle Scholar
  207. Potenza, M. N., Steinberg, M. A., McLaughlin, S. D., Wu, R., Rounsaville, B. J., Krishnan-Sarin, S., et al. (2004). Characteristics of tobacco-smoking problem gamblers calling a gambling helpline. The American Journal on Addictions, 13(5), 471–493.  https://doi.org/10.1080/10550490490483044 PubMedCrossRefGoogle Scholar
  208. Potenza, M. N., Steinberg, M. A., Skudlarski, P., Fulbright, R. K., Lacadie, C. M., Wilber, M. K., et al. (2003). Gambling urges in pathological gambling: a functional magnetic resonance imaging study. Archives of General Psychiatry, 60(8), 828–836.  https://doi.org/10.1001/archpsyc.60.8.828 PubMedCrossRefGoogle Scholar
  209. Powell, Jane, Dawkins, L., West, R., Powell, J., & Pickering, A. (2010). Relapse to smoking during unaided cessation: clinical, cognitive and motivational predictors. Psychopharmacology, 212(4), 537–549.  https://doi.org/10.1007/s00213-010-1975-8 PubMedCrossRefGoogle Scholar
  210. Reed, S. C., Haney, M., Evans, S. M., Vadhan, N. P., Rubin, E., & Foltin, R. W. (2009). Cardiovascular and subjective effects of repeated smoked cocaine administration in experienced cocaine users. Drug and Alcohol Dependence, 102(1-3), 102–107.  https://doi.org/10.1016/j.drugalcdep.2009.02.004 PubMedPubMedCentralCrossRefGoogle Scholar
  211. Rennert, L., Denis, C., Peer, K., Lynch, K. G., Gelernter, J., & Kranzler, H. R. (2014). DSM-5 gambling disorder: prevalence and characteristics in a substance-use disorder sample. Experimental and Clinical Psychopharmacology, 22(1), 50–56.  https://doi.org/10.1037/a0034518 PubMedPubMedCentralCrossRefGoogle Scholar
  212. Rivalan, M., Ahmed, S. H., & Dellu-Hagedorn, F. (2009). Risk-prone individuals prefer the wrong options on a rat version of the Iowa Gambling Task. Biological Psychiatry, 66(8), 743–749.  https://doi.org/10.1016/j.biopsych.2009.04.008 PubMedCrossRefGoogle Scholar
  213. Robinson, J., Sareen, J., Cox, B. J., & Bolton, J. M. (2011). Role of Self-medication in the Development of Comorbid Anxiety and Substance Use Disorders: A Longitudinal Investigation. Archives of General Psychiatry, 68(8), 800–807.  https://doi.org/10.1001/archgenpsychiatry.2011.75 PubMedCrossRefGoogle Scholar
  214. Robinson, M. J. F., Anselme, P., Fischer, A. M., & Berridge, K. C. (2014a). Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research, 266, 119–130.  https://doi.org/10.1016/j.bbr.2014.03.004 PubMedPubMedCentralCrossRefGoogle Scholar
  215. Robinson, M. J. F., Anselme, P., Suchomel, K., & Berridge, K. C. (2015a). Amphetamine-Induced Sensitization and Reward Uncertainty Similarly Enhance Incentive Salience for Conditioned Cues. Behavioral Neuroscience, 129(4), 502–511.  https://doi.org/10.1037/bne0000064 PubMedPubMedCentralCrossRefGoogle Scholar
  216. Robinson, M. J. F., & Berridge, K. C. (2015). Wanting vs Needing (pp. 351–356). Elsevier.  https://doi.org/10.1016/B978-0-08-097086-8.26091-1
  217. Robinson, M. J. F., Fischer, A. M., Ahuja, A., Lesser, E. N., & Maniates, H. (2015b). Roles of "Wanting" and “Liking” in Motivating Behavior: Gambling, Food, and Drug Addictions. In P. D. Balsam & E. H. Simpson (Eds.), Current Topics in Behavioral Neuroscience (Vol. 27, pp. 105–136). Cham: Current topics in behavioral neurosciences. 10.1007/7854_2015_387Google Scholar
  218. Robinson, M. J. F., Robinson, T. E., & Berridge, K. C. (2013). Incentive Salience and the Transition to Addiction. In Biological Research on Addiction (pp. 391–399). Elsevier.  https://doi.org/10.1016/B978-0-12-398335-0.00039-X
  219. Robinson, T. E., Angus, A. L., & Becker, J. B. (1985). Sensitization to stress: the enduring effects of prior stress on amphetamine-induced rotational behavior. Life Sciences, 37(11), 1039–1042.PubMedCrossRefGoogle Scholar
  220. Robinson, T. E., & Becker, J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Research, 396(2), 157–198.PubMedCrossRefGoogle Scholar
  221. Robinson, T. E., & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Brain Research Reviews, 18(3), 247–291.PubMedCrossRefGoogle Scholar
  222. Robinson, T. E., & Berridge, K. C. (2008). The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363(1507), 3137–3146.  https://doi.org/10.1098/rstb.2008.0093 PubMedPubMedCentralCrossRefGoogle Scholar
  223. Robinson, T. E., & Flagel, S. B. (2009). Dissociating the Predictive and Incentive Motivational Properties of Reward-Related Cues Through the Study of Individual Differences. Biological Psychiatry, 65(10), 869–873.  https://doi.org/10.1016/j.biopsych.2008.09.006 PubMedCrossRefGoogle Scholar
  224. Robinson, T. E., Jurson, P. A., Bennett, J. A., & Bentgen, K. M. (1988). Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a microdialysis study in freely moving rats. Brain Research, 462(2), 211–222.PubMedCrossRefGoogle Scholar
  225. Robinson, T. E., Yager, L. M., Cogan, E. S., & Saunders, B. T. (2014b). On the motivational properties of reward cues: individual differences. Neuropharmacology, 76 Pt B, 450–459.  https://doi.org/10.1016/j.neuropharm.2013.05.040 PubMedCrossRefGoogle Scholar
  226. Rodrigues, A.-J., Leão, P., Carvalho, M., Almeida, O. F. X., & Sousa, N. (2011). Potential programming of dopaminergic circuits by early life stress. Psychopharmacology, 214(1), 107–120.  https://doi.org/10.1007/s00213-010-2085-3 PubMedCrossRefGoogle Scholar
  227. Rømer Thomsen, K., Fjorback, L. O., Møller, A., & Lou, H. C. (2014). Applying incentive sensitization models to behavioral addiction. Neuroscience and Biobehavioral Reviews, 45C, 343–349.  https://doi.org/10.1016/j.neubiorev.2014.07.009 CrossRefGoogle Scholar
  228. Ronzitti, S., Kraus, S. W., Hoff, R. A., & Potenza, M. N. (2018). Stress moderates the relationships between problem-gambling severity and specific psychopathologies. Psychiatry Research, 259, 254–261.  https://doi.org/10.1016/j.psychres.2017.10.028 PubMedCrossRefGoogle Scholar
  229. Rose, J. E., Behm, F. M., Westman, E. C., & Johnson, M. (2000). Dissociating nicotine and nonnicotine components of cigarette smoking. Pharmacology, Biochemistry, and Behavior, 67(1), 71–81.PubMedCrossRefGoogle Scholar
  230. Saal, D., Dong, Y., Bonci, A., & Malenka, R. C. (2003). Drugs of Abuse and Stress Trigger a Common Synaptic Adaptation in Dopamine Neurons. Neuron, 37(4), 577–582.  https://doi.org/10.1016/s0896-6273(03)00021-7 PubMedCrossRefGoogle Scholar
  231. Shackman, A. J., Stockbridge, M. D., Tillman, R. M., Kaplan, C. M., Tromp, D. P. M., Fox, A. S., & Gamer, M. (2016). The neurobiology of dispositional negativity and attentional biases to threat: Implications for understanding anxiety disorders in adults and youth. Journal of Experimental Psychopathology, 7(3), 311–342.  https://doi.org/10.5127/jep.054015 PubMedPubMedCentralCrossRefGoogle Scholar
  232. Shuster, L., Webster, G. W., & Yu, G. (1975). Increased running response to morphine in morphine-pretreated mice. Journal of Pharmacology and Experimental Therapeutics, 192(1), 64–67.PubMedGoogle Scholar
  233. Shuster, L., Yu, G., & Bates, A. (1977). Sensitization to cocaine stimulation in mice. Psychopharmacology, 52(2), 185–190.PubMedCrossRefGoogle Scholar
  234. Simmons, A., Matthews, S. C., Paulus, M. P., & Stein, M. B. (2008). Intolerance of uncertainty correlates with insula activation during affective ambiguity. Neuroscience Letters, 430(2), 92–97.  https://doi.org/10.1016/j.neulet.2007.10.030 PubMedCrossRefGoogle Scholar
  235. Singer, B. F., Scott-Railton, J., & Vezina, P. (2012). Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behavioural Brain Research, 226(1), 340–344.  https://doi.org/10.1016/j.bbr.2011.09.003 PubMedCrossRefGoogle Scholar
  236. Sinha, R., Fox, H. C., Hong, K. A., Bergquist, K., Bhagwagar, Z., & Siedlarz, K. M. (2009). Enhanced negative emotion and alcohol craving, and altered physiological responses following stress and cue exposure in alcohol dependent individuals. Neuropsychopharmacology, 34(5), 1198–1208.  https://doi.org/10.1038/npp.2008.78 PubMedCrossRefGoogle Scholar
  237. Sinha, R., Fox, H. C., Hong, K.-I. A., Hansen, J., Tuit, K., & Kreek, M. J. (2011). Effects of adrenal sensitivity, stress- and cue-induced craving, and anxiety on subsequent alcohol relapse and treatment outcomes. Archives of General Psychiatry, 68(9), 942–952.  https://doi.org/10.1001/archgenpsychiatry.2011.49 PubMedPubMedCentralCrossRefGoogle Scholar
  238. Sinha, R., & Li, C. S. R. (2007). Imaging stress- and cue-induced drug and alcohol craving: association with relapse and clinical implications. Drug and Alcohol Review, 26(1), 25–31.  https://doi.org/10.1080/09595230601036960 PubMedCrossRefGoogle Scholar
  239. Shaffer, H. J., & Hall, M. N. (2001). Updating and refining prevalence estimates of disordered gambling behaviour in the United States and Canada. Canadian Journal of Public Health = Revue Canadienne De Santé Publique, 92(3), 168–172.Google Scholar
  240. Slutske, W. S., Ellingson, J. M., Richmond-Rakerd, L. S., Zhu, G., & Martin, N. G. (2013). Shared genetic vulnerability for disordered gambling and alcohol use disorder in men and women: evidence from a national community-based Australian Twin Study. Twin Research and Human Genetics : the Official Journal of the International Society for Twin Studies, 16(2), 525–534.  https://doi.org/10.1017/thg.2013.11 CrossRefGoogle Scholar
  241. Slutske, W. S., Piasecki, T. M., Blaszczynski, A., & Martin, N. G. (2010). Pathological gambling recovery in the absence of abstinence. Addiction, 105(12), 2169–2175.  https://doi.org/10.1111/j.1360-0443.2010.03080.x PubMedPubMedCentralCrossRefGoogle Scholar
  242. Slutske, W. S., Zhu, G., Meier, M. H., & Martin, N. G. (2011). Disordered gambling as defined by the Diagnostic and Statistical Manual of Mental Disorders and the South Oaks Gambling Screen: Evidence for a common etiologic structure. Journal of Abnormal Psychology, 120(3), 743–751.  https://doi.org/10.1037/a0022879 PubMedPubMedCentralCrossRefGoogle Scholar
  243. Small, A. C., Kampman, K. M., Plebani, J., De Jesus Quinn, M., Peoples, L., & Lynch, K. G. (2009). Tolerance and sensitization to the effects of cocaine use in humans: a retrospective study of long-term cocaine users in Philadelphia. Substance Use & Misuse, 44(13), 1888–1898.  https://doi.org/10.3109/10826080902961179
  244. Song, M., Wang, X. Y., Zhao, M., Wang, X.-Y., Zhai, H. F., & Lu, L. (2007). Role of Stress in Acquisition of Alcohol-Conditioned Place Preference in Adolescent and Adult Mice. Alcoholism, Clinical and Experimental Research, 31(12), 2001–2005.  https://doi.org/10.1111/j.1530-0277.2007.00522.x PubMedCrossRefGoogle Scholar
  245. Spoelder, M., Tsutsui, K. T., Lesscher, H. M. B., Vanderschuren, L. J. M. J., & Clark, J. J. (2015). Adolescent Alcohol Exposure Amplifies the Incentive Value of Reward-Predictive Cues Through Potentiation of Phasic Dopamine Signaling. Neuropsychopharmacology, 40(13), 2873–2885.  https://doi.org/10.1038/npp.2015.139 PubMedPubMedCentralCrossRefGoogle Scholar
  246. Srey, C. S., Maddux, J.-M. N., & Chaudhri, N. (2015). The attribution of incentive salience to Pavlovian alcohol cues: a shift from goal-tracking to sign-tracking. Frontiers in Behavioral Neuroscience, 9, 1–13.  https://doi.org/10.3389/fnbeh.2015.00054/abstract CrossRefGoogle Scholar
  247. Steeves, T. D. L., Miyasaki, J., Zurowski, M., Lang, A. E., Pellecchia, G., Van Eimeren, T., et al. (2009). Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain : a Journal of Neurology, 132(Pt 5), 1376–1385.  https://doi.org/10.1093/brain/awp054 CrossRefGoogle Scholar
  248. Stinchfield, R., & Winters, K. C. (2001). Outcome of Minnesota's gambling treatment programs. Journal of Gambling Studies, 17(3), 217–245.PubMedCrossRefGoogle Scholar
  249. Tanovic, E., Gee, D. G., & Joormann, J. (2018). Intolerance of uncertainty: Neural and psychophysiological correlates of the perception of uncertainty as threatening. Clinical Psychology Review, 60, 87–99.  https://doi.org/10.1016/j.cpr.2018.01.001 PubMedCrossRefGoogle Scholar
  250. Thalemann, R., Wölfling, K., & Grüsser, S. M. (2007). Specific cue reactivity on computer game-related cues in excessive gamers. Behavioral Neuroscience, 121(3), 614–618.  https://doi.org/10.1037/0735-7044.121.3.614 PubMedCrossRefGoogle Scholar
  251. Tindell, A. J., Berridge, K. C., Zhang, J., Peciña, S., & Aldridge, J. W. (2005). Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. The European Journal of Neuroscience, 22(10), 2617–2634.  https://doi.org/10.1111/j.1460-9568.2005.04411.x PubMedCrossRefGoogle Scholar
  252. Tomie, A., & Sharma, N. (2013). Pavlovian sign-tracking model of alcohol abuse. Current Drug Abuse Reviews, 6(3), 201–219.PubMedCrossRefGoogle Scholar
  253. Tschibelu, E., & Elman, I. (2011). Gender differences in psychosocial stress and in its relationship to gambling urges in individuals with pathological gambling. Journal of Addictive Diseases, 30(1), 81–87.  https://doi.org/10.1080/10550887.2010.531671 PubMedCrossRefGoogle Scholar
  254. Van Bockstaele, B., Verschuere, B., Tibboel, H., De Houwer, J., Crombez, G., & Koster, E. H. W. (2014). A review of current evidence for the causal impact of attentional bias on fear and anxiety. Psychological Bulletin, 140(3), 682–721.  https://doi.org/10.1037/a0034834 PubMedCrossRefGoogle Scholar
  255. van Holst, R. J., Lemmens, J. S., Valkenburg, P. M., Peter, J., Veltman, D. J., & Goudriaan, A. E. (2012). Attentional bias and disinhibition toward gaming cues are related to problem gaming in male adolescents. The Journal of Adolescent Health : Official Publication of the Society for Adolescent Medicine, 50(6), 541–546.  https://doi.org/10.1016/j.jadohealth.2011.07.006 CrossRefGoogle Scholar
  256. Versaggi, C. L., King, C. P., & Meyer, P. J. (2016). The tendency to sign-track predicts cue-induced reinstatement during nicotine self-administration, and is enhanced by nicotine but not ethanol. Psychopharmacology, 233(15-16), 2985–2997.  https://doi.org/10.1007/s00213-016-4341-7 PubMedPubMedCentralCrossRefGoogle Scholar
  257. Vezina, P. (2004). Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neuroscience and Biobehavioral Reviews, 27(8), 827–839.  https://doi.org/10.1016/j.neubiorev.2003.11.001 PubMedCrossRefGoogle Scholar
  258. Vezina, P., Lorrain, D. S., Arnold, G. M., Austin, J. D., & Suto, N. (2002). Sensitization of Midbrain Dopamine Neuron Reactivity Promotes the Pursuit of Amphetamine. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 22(11), 4654–4662.  https://doi.org/10.1523/JNEUROSCI.22-11-04654.2002 CrossRefGoogle Scholar
  259. Vezina, P., McGehee, D. S., & Green, W. N. (2007). Exposure to nicotine and sensitization of nicotine-induced behaviors. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31(8), 1625–1638.  https://doi.org/10.1016/j.pnpbp.2007.08.038 CrossRefGoogle Scholar
  260. Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Jayne, M., Franceschi, D., et al. (2002). “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse, 44(3), 175–180.  https://doi.org/10.1002/syn.10075 PubMedCrossRefGoogle Scholar
  261. Volkow, N. D., Wang, G.-J., Telang, F., Fowler, J. S., Logan, J., Childress, A. R., et al. (2006). Cocaine Cues and Dopamine in Dorsal Striatum: Mechanism of Craving in Cocaine Addiction. The Journal of Neuroscience, 26(24), 6583–6588.PubMedCrossRefGoogle Scholar
  262. Walther, B., Morgenstern, M., & Hanewinkel, R. (2012). Co-Occurrence of Addictive Behaviours: Personality Factors Related to Substance Use, Gambling and Computer Gaming. European Addiction Research, 18(4), 167–174.  https://doi.org/10.1159/000335662 PubMedCrossRefGoogle Scholar
  263. Wareham, J. D., & Potenza, M. N. (2010). Pathological Gambling and Substance Use Disorders. The American Journal of Drug and Alcohol Abuse, 36(5), 242–247.  https://doi.org/10.3109/00952991003721118 PubMedPubMedCentralCrossRefGoogle Scholar
  264. Waters, A. J., Shiffman, S., Sayette, M. A., Paty, J. A., Gwaltney, C. J., & Balabanis, M. H. (2003). Attentional bias predicts outcome in smoking cessation. Health Psychology : Official Journal of the Division of Health Psychology, American Psychological Association, 22(4), 378–387.  https://doi.org/10.1037/0278-6133.22.4.378 CrossRefGoogle Scholar
  265. Weinberger, A. H., Franco, C. A., Hoff, R. A., Pilver, C., Steinberg, M. A., Rugle, L., et al. (2015). Cigarette smoking, problem-gambling severity, and health behaviors in high-school students. Addictive Behaviors Reports, 1(C), 40–48.  https://doi.org/10.1016/j.abrep.2015.01.001 PubMedPubMedCentralCrossRefGoogle Scholar
  266. West, R. (2009). The Multiple Facets of Cigarette Addiction and What They Mean for Encouraging and Helping Smokers to Stop. COPD: Journal of Chronic Obstructive Pulmonary Disease, 6(4), 277–283.  https://doi.org/10.1080/15412550903049181 PubMedCrossRefGoogle Scholar
  267. Wise, R. A., & Bozarth, M. A. (1987). A psychomotor stimulant theory of addiction. Psychological Review, 94(4), 469–492.PubMedCrossRefGoogle Scholar
  268. Wulfert, E., Maxson, J., & Jardin, B. (2009). Cue-specific reactivity in experienced gamblers. Psychology of Addictive Behaviors, 23(4), 731–735.  https://doi.org/10.1037/a0017134 PubMedPubMedCentralCrossRefGoogle Scholar
  269. Wyvell, C. L., & Berridge, K. C. (2000). Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward "wanting" without enhanced “liking” or response reinforcement. The Journal of Neuroscience, 20(21), 8122–8130.PubMedCrossRefGoogle Scholar
  270. Wyvell, C. L., & Berridge, K. C. (2001). Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. The Journal of Neuroscience, 21(19), 7831–7840.PubMedCrossRefGoogle Scholar
  271. Yager, L. M., & Robinson, T. E. (2013). A classically conditioned cocaine cue acquires greater control over motivated behavior in rats prone to attribute incentive salience to a food cue. Psychopharmacology, 226(2), 217–228.  https://doi.org/10.1007/s00213-012-2890-y PubMedCrossRefGoogle Scholar
  272. Yap, J. J., Chartoff, E. H., Holly, E. N., Potter, D. N., Carlezon, W. A., & Miczek, K. A. (2015). Social defeat stress-induced sensitization and escalated cocaine self-administration: the role of ERK signaling in the rat ventral tegmental area. Psychopharmacology, 232(9), 1555–1569.  https://doi.org/10.1007/s00213-014-3796-7 PubMedCrossRefGoogle Scholar
  273. Zack, M., Featherstone, R. E., Mathewson, S., & Fletcher, P. J. (2014). Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. Frontiers in Behavioral Neuroscience, 8, 36.  https://doi.org/10.3389/fnbeh.2014.00036 PubMedPubMedCentralCrossRefGoogle Scholar
  274. Zack, M., & Poulos, C. X. (2009). Parallel roles for dopamine in pathological gambling and psychostimulant addiction. Current Drug Abuse Reviews, 2(1), 11–25.PubMedCrossRefGoogle Scholar
  275. Zago, A., Leao, R. M., Carneiro-de-Oliveira, P. E., Marin, M. T., Cruz, F. C., & Planeta, C. S. (2012). Effects of simultaneous exposure to stress and nicotine on nicotine-induced locomotor activation in adolescent and adult rats. Brazilian Journal of Medical and Biological Research = Revista Brasileira De Pesquisas Medicas E Biologicas, 45(1), 33–37.  https://doi.org/10.1590/S0100-879X2011007500153 PubMedCrossRefGoogle Scholar
  276. Zeeb, F. D., Li, Z., Fisher, D. C., Zack, M. H., & Fletcher, P. J. (2017). Uncertainty exposure causes behavioural sensitization and increases risky decision-making in male rats: toward modelling gambling disorder. Journal of Psychiatry & Neuroscience, 42(6), 404–413.  https://doi.org/10.1503/jpn.170003 CrossRefGoogle Scholar
  277. Zeeb, F. D., Robbins, T. W., & Winstanley, C. A. (2009). Serotonergic and Dopaminergic Modulation of Gambling Behavior as Assessed Using a Novel Rat Gambling Task. Neuropsychopharmacology, 34(10), 2329–2343.  https://doi.org/10.1038/npp.2009.62 PubMedCrossRefGoogle Scholar
  278. Zhang, J., Berridge, K. C., Tindell, A. J., Smith, K. S., & Aldridge, J. W. (2009). A neural computational model of incentive salience. PLoS Computational Biology, 5(7), e1000437.  https://doi.org/10.1371/journal.pcbi.1000437 PubMedPubMedCentralCrossRefGoogle Scholar
  279. Zimmermann, P., Wittchen, H. U., Höfler, M., Pfister, H., Kessler, R. C., & Lieb, R. (2003). Primary anxiety disorders and the development of subsequent alcohol use disorders: a 4-year community study of adolescents and young adults. Psychological Medicine, 33(33), 1211–1222.  https://doi.org/10.1017/S0033291703008158 PubMedCrossRefGoogle Scholar
  280. Zvolensky, M. J., & Bernstein, A. (2005). Cigarette Smoking and Panic Psychopathology. Current Directions in Psychological Science, 14(6), 301–305.  https://doi.org/10.1111/j.0963-7214.2005.00386.x CrossRefGoogle Scholar
  281. Zvolensky, M. J., Bernstein, A., Marshall, E. C., & Feldner, M. T. (2006). Panic attacks, panic disorder, and agoraphobia: Associations with substance use, abuse, and dependence. Current Psychiatry Reports, 8(4), 279–285.  https://doi.org/10.1007/s11920-006-0063-6 PubMedCrossRefGoogle Scholar
  282. Zvolensky, M. J., Stewart, S. H., Vujanovic, A. A., Gavric, D., & Steeves, D. (2009). Anxiety sensitivity and anxiety and depressive symptoms in the prediction of early smoking lapse and relapse during smoking cessation treatment. Nicotine & Tobacco Research : Official Journal of the Society for Research on Nicotine and Tobacco, 11(3), 323–331.  https://doi.org/10.1093/ntr/ntn037 CrossRefGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2018

Authors and Affiliations

  1. 1.Psychology Department and the Neuroscience and Behavior ProgramWesleyan UniversityMiddletownUSA
  2. 2.University of North Carolina Chapel HillChapel HillUSA
  3. 3.National Institutes on Drug AbuseBaltimoreUSA

Personalised recommendations