Cognitive, Affective, & Behavioral Neuroscience

, Volume 17, Issue 6, pp 1073–1083 | Cite as

Increased locus coeruleus tonic activity causes disengagement from a patch-foraging task

  • Gary A. Kane
  • Elena M. Vazey
  • Robert C. Wilson
  • Amitai Shenhav
  • Nathaniel D. Daw
  • Gary Aston-Jones
  • Jonathan D. Cohen


High levels of locus coeruleus (LC) tonic activity are associated with distraction and poor performance within a task. Adaptive gain theory (AGT; Aston-Jones & Cohen, 2005) suggests that this may reflect an adaptive function of the LC, encouraging search for more remunerative opportunities in times of low utility. Here, we examine whether stimulating LC tonic activity using designer receptors (DREADDs) promotes searching for better opportunities in a patch-foraging task as the value of a patch diminishes. The task required rats to decide repeatedly whether to exploit an immediate but depleting reward within a patch or to incur the cost of a time delay to travel to a new, fuller patch. Similar to behavior associated with high LC tonic activity in other tasks, we found that stimulating LC tonic activity impaired task performance, resulting in reduced task participation and increased response times and omission rates. However, this was accompanied by a more specific, predicted effect: a significant tendency to leave patches earlier, which was best explained by an increase in decision noise rather than a systematic bias to leave earlier (i.e., at higher values). This effect is consistent with the hypothesis that high LC tonic activity favors disengagement from current behavior, and the pursuit of alternatives, by augmenting processing noise. These results provide direct causal evidence for the relationship between LC tonic activity and flexible task switching proposed by AGT.


Locus coeruleus Norepinephrine Decision-making Foraging 


  1. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S., & Roth, B. L. (2007). Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proceedings of the National Academy of Sciences, 104(12), 5163–5168.CrossRefGoogle Scholar
  2. Aston-Jones, G., & Bloom, F. E. (1981). Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. The Journal of Neuroscience, 1(8), 887–900.PubMedGoogle Scholar
  3. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.CrossRefPubMedGoogle Scholar
  4. Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. The Journal of Neuroscience, 14(7), 4467–4480.PubMedGoogle Scholar
  5. Aston-Jones, G., Rajkowski, J., & Kubiak, P. (1997). Conditioned responses of monkey locus coeruleus neurons anticipate acquisition of discriminative behavior in a vigilance task. Neuroscience, 80(3), 697–715.CrossRefPubMedGoogle Scholar
  6. Bouret, S., & Sara, S. J. (2004). Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. European Journal of Neuroscience, 20(May), 791–802.CrossRefPubMedGoogle Scholar
  7. Bouret, S., & Sara, S. J. (2005). Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends in Neurosciences, 28(11), 574–582.CrossRefPubMedGoogle Scholar
  8. Brunner, D., Kacelnik, A., & Gibbon, J. (1992). Optimal foraging and timing processes in the starling, Sturnus vulgaris: Effect of inter-capture interval. Animal Behaviour, 44(4), 597–613.CrossRefGoogle Scholar
  9. Calhoun, A. J., & Hayden, B. Y. (2015). The foraging brain. Current Opinion in Behavioral Sciences, 5, 24–31.CrossRefGoogle Scholar
  10. Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9, 129–136.CrossRefPubMedGoogle Scholar
  11. Clayton, E. C., Rajkowski, J., Cohen, J. D., & Aston-Jones, G. (2004). Phasic activation of monkey locus ceruleus neurons by simple decisions in a forced-choice task. The Journal of Neuroscience, 24(44), 9914–9920.CrossRefPubMedGoogle Scholar
  12. Constantino, S. M., & Daw, N. D. (2015). Learning the opportunity cost of time in a patch-foraging task. Cognitive, Affective & Behavioral Neuroscience, 15(4), 837–853.CrossRefGoogle Scholar
  13. Core Team, R. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  14. De Rosario-Martinez, H. (2015). phia: Post-Hoc Interaction Analysis.Google Scholar
  15. Dong-Youn Hwang, William A. Carlezon, Ole Isacson, Kwang-Soo Kim, (2001) A High-Efficiency Synthetic Promoter That Drives Transgene Expression Selectively in Noradrenergic Neurons. Human Gene Therapy 12(14):1731–1740.Google Scholar
  16. Dong-Youn Hwang, Michelle M. Hwang, Han-Soo Kim, Kwang-Soo Kim, (2005) Genetically engineered dopamine β-hydroxylase gene promoters with better PHOX2-binding sites drive significantly enhanced transgene expression in a noradrenergic cell-specific manner. Molecular Therapy 11(1):132–141.Google Scholar
  17. Douglas Bates, Martin Mächler, Ben Bolker, Steve Walker, (2015) Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software, 67(1), 1–48.Google Scholar
  18. Eldar, E., Cohen, J. D., & Niv, Y. (2013). The effects of neural gain on attention and learning. Nature Neuroscience, 16(June), 1146–1153.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gilzenrat, M. S., Nieuwenhuis, S., Jepma, M., & Cohen, J. D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective & Behavioral Neuroscience, 10(2), 252–269.CrossRefGoogle Scholar
  20. Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2011). Neuronal basis of sequential foraging decisions in a patchy environment. Nature Neuroscience, 14(7), 933–939.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration-exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23, 1587–1596.CrossRefPubMedGoogle Scholar
  22. Joshi, S., Li, Y., Kalwani, R. M., & Gold, J. I. (2016). Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron, 89(1), 221–234.CrossRefPubMedGoogle Scholar
  23. Kacelnik, A., & Todd, I. A. (1992). Psychological mechanisms and the marginal value theorem: Effect of variability in travel time on patch exploitation. Animal Behaviour, 43(2), 313–322.CrossRefGoogle Scholar
  24. Matthew E Carter, Ofer Yizhar, Sachiko Chikahisa, Hieu Nguyen, Antoine Adamantidis, Seiji Nishino, Karl Deisseroth, Luis de Lecea, (2010) Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nature Neuroscience 13(12):1526–1533.Google Scholar
  25. McCall, J. G., Al-Hasani, R., Siuda, E. R., Hong, D. Y., Norris, A. J., Ford, C. P., & Bruchas, M. R. (2015). CRH engagement of the locus coeruleus noradrenergic system mediates stress-induced anxiety. Neuron, 87(3), 605–620. doi: 10.1016/j.neuron.2015.07.002 CrossRefPubMedPubMedCentralGoogle Scholar
  26. McGaughy, J., Ross, R. S., & Eichenbaum, H. (2008). Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience, 153, 63–71.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Pyke, G. H. (1978). Optimal foraging in hummingbirds: Testing the marginal value theorem. Integrative and Comparative Biology, 18(4), 739–752.Google Scholar
  28. Pyke, G. H. (1984). Optimal foraging theory: A critical review. Annual Review of Ecology and Systematics, 15(1), 523–575.CrossRefGoogle Scholar
  29. Sara, S. J., & Bouret, S. (2012). Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron, 76(1), 130–141.CrossRefPubMedGoogle Scholar
  30. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682.Google Scholar
  31. Shea-Brown, E., Gilzenrat, M. S., & Cohen, J. D. (2008). Optimization of decision making in multilayer networks: The role of locus coeruleus. Neural Computation, 20(12), 2863–2894.CrossRefPubMedGoogle Scholar
  32. Smith, K. S., Bucci, D. J., Luikart, B. W., & Mahler, S. V. (2016). DREADDS: Use and application in behavioral neuroscience. Behavioral Neuroscience, 130(2), 137–155.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton: Princeton University Press.Google Scholar
  34. Tervo, D. G. R., Proskurin, M., Manakov, M., Kabra, M., Vollmer, A., Branson, K., & Karpova, A. Y. (2014). Behavioral variability through stochastic choice and its gating by anterior cingulate cortex. Cell, 159(1), 21–32.CrossRefPubMedGoogle Scholar
  35. Usher, M., Cohen, J. D., Servan-Schreiber, D., Rajkowski, J., & Aston-Jones, G. (1999). The role of locus coeruleus in the regulation of cognitive performance. Science, 283(5401), 549–554.CrossRefPubMedGoogle Scholar
  36. Varazzani, C., San-Galli, A., Gilardeau, S., & Bouret, S. (2015). Noradrenaline and dopamine neurons in the reward/effort trade-off: A direct electrophysiological comparison in behaving monkeys. The Journal of Neuroscience, 35(20), 7866–7877.CrossRefPubMedGoogle Scholar
  37. Vazey, E. M., & Aston-Jones, G. (2014). Designer receptor manipulations reveal a role of the locus coeruleus noradrenergic system in isoflurane general anesthesia. Proceedings of the National Academy of Sciences, 111(16), 3859–3864.CrossRefGoogle Scholar
  38. Warren, C. M., Eldar, E., van den Brink, R. L., Tona, K.-D., van der Wee, N. J., Giltay, E. J., … & Nieuwenhuis, S. (2016). Catecholamine-mediated increases in gain enhance the precision of cortical representations. Journal of Neuroscience, 36(21), 5699–5708.Google Scholar
  39. Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46, 681–692.CrossRefPubMedGoogle Scholar
  40. Alexander, G. M., Rogan, S. C., Abbas, A. I., Armbruster, B. N., Pei, Y., Allen, J. A., … & Roth, B. L. (2009). Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron, 63(1), 27–39.Google Scholar

Copyright information

© Psychonomic Society, Inc. 2017

Authors and Affiliations

  • Gary A. Kane
    • 1
  • Elena M. Vazey
    • 2
  • Robert C. Wilson
    • 3
  • Amitai Shenhav
    • 1
    • 4
  • Nathaniel D. Daw
    • 1
  • Gary Aston-Jones
    • 5
  • Jonathan D. Cohen
    • 1
    • 6
  1. 1.Department of Psychology and Neuroscience InstitutePrinceton UniversityPrincetonUSA
  2. 2.Department of BiologyUniversity of MassachusettsAmherstUSA
  3. 3.Department of PsychologyUniversity of ArizonaTucsonUSA
  4. 4.Department of Cognitive, Linguistic, & Psychological Science and Brown Institute for Brain ScienceBrown UniversityProvidenceUSA
  5. 5.Brain Health InstituteRutgers University/Rutgers Biomedical and Health SciencesPiscatawayUSA
  6. 6.Princeton Neuroscience InstitutePrincetonUSA

Personalised recommendations