Cognitive, Affective, & Behavioral Neuroscience

, Volume 17, Issue 1, pp 185–197 | Cite as

Caricature generalization benefits for faces learned with enhanced idiosyncratic shape or texture

  • Marlena L. Itz
  • Stefan R. Schweinberger
  • Jürgen M. Kaufmann


Recent findings show benefits for learning and subsequent recognition of faces caricatured in shape or texture, but there is little evidence on whether this caricature learning advantage generalizes to recognition of veridical counterparts at test. Moreover, it has been reported that there is a relatively higher contribution of texture information, at the expense of shape information, for familiar compared to unfamiliar face recognition. The aim of this study was to examine whether veridical faces are recognized better when they were learned as caricatures compared to when they were learned as veridicals—what we call a caricature generalization benefit. Photorealistic facial stimuli derived from a 3-D camera system were caricatured selectively in either shape or texture by 50 %. Faces were learned across different images either as veridicals, shape caricatures, or texture caricatures. At test, all learned and novel faces were presented as previously unseen frontal veridicals, and participants performed an old–new task. We assessed accuracies, reaction times, and face-sensitive event-related potentials (ERPs). Faces learned as caricatures were recognized more accurately than faces learned as veridicals. At learning, N250 and LPC were largest for shape caricatures, suggesting encoding advantages of distinctive facial shape. At test, LPC was largest for faces that had been learned as texture caricatures, indicating the importance of texture for familiar face recognition. Overall, our findings demonstrate that caricature learning advantages can generalize to and, importantly, improve recognition of veridical versions of faces.


Face learning Shape Texture Caricaturing Encoding ERPs 


  1. Abdi, H. (2007). The Bonferonni and Šidák corrections for multiple comparisons. In N. Salkind (Ed.), Encyclopedia of measurement and statistics. Thousand Oaks, CA: Sage.Google Scholar
  2. Beale, J. M., & Keil, F. C. (1995). Categorical effects in the perception of faces. Cognition, 57(3), 217–239. doi:10.1016/0010-0277(95)00669-x CrossRefPubMedGoogle Scholar
  3. Benson, P. J., & Perrett, D. I. (1991). Synthesizing continuous-tone caricatures. Image and Vision Computing, 9(2), 123–129. doi:10.1016/0262-8856(91)90022-h CrossRefGoogle Scholar
  4. Berg, P., & Scherg, M. (1994). A multiple source approach to the correction of eye artifacts. Electroencephalography and Clinical Neurophysiology, 90(3), 229–241. doi:10.1016/0013-4694(94)90094-9 CrossRefPubMedGoogle Scholar
  5. Bindemann, M., Burton, A. M., Leuthold, H., & Schweinberger, S. R. (2008). Brain potential correlates of face recognition: Geometric distortions and the N250r brain response to stimulus repetitions. Psychophysiology, 45(4), 535–544. doi:10.1111/j.1469-8986.2008.00663.x CrossRefPubMedGoogle Scholar
  6. Brennan, S. E. (1985). Caricature generator, the dynamic exaggeration of faces by computer + illustrated works. Leonardo, 18(3), 170–178. doi:10.2307/1578048 CrossRefGoogle Scholar
  7. Burton, A. M., Jenkins, R., Hancock, P. J. B., & White, D. (2005). Robust representations for face recognition: The power of averages. Cognitive Psychology, 51(3), 256–284. doi:10.1016/j.cogpsych.2005.06.003 CrossRefPubMedGoogle Scholar
  8. Burton, A. M., Schweinberger, S. R., Jenkins, R., & Kaufmann, J. M. (2015). Arguments against a configural processing account of familiar face recognition. Perspectives on Psychological Science, 10(4), 482–496. doi:10.1177/1745691615583129 CrossRefPubMedGoogle Scholar
  9. Burton, A. M., & Vokey, J. R. (1998). The face-space typicality paradox: Understanding the face-space metaphor. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 51(3), 475–483.CrossRefGoogle Scholar
  10. Caharel, S., Jiang, F., Blanz, V., & Rossion, B. (2009). Recognizing an individual face: 3D shape contributes earlier than 2D surface reflectance information. NeuroImage, 47(4), 1809–1818. doi:10.1016/j.neuroimage.2009.05.065 CrossRefPubMedGoogle Scholar
  11. Deffenbacher, K. A., Johanson, J., Vetter, T., & O’Toole, A. J. (2000). The face typicality-recognizability relationship: Encoding or retrieval locus? Memory & Cognition, 28(7), 1173–1182. doi:10.3758/bf03211818 CrossRefGoogle Scholar
  12. Eimer, M. (2000a). Event-related brain potentials distinguish processing stages involved in face perception and recognition. Clinical Neurophysiology, 111(4), 694–705. doi:10.1016/s1388-2457(99)00285-0 CrossRefPubMedGoogle Scholar
  13. Eimer, M. (2000b). The face-specific N170 component reflects late stages in the structural encoding of faces. Neuroreport, 11(10), 2319–2324. doi:10.1097/00001756-200007140-00050 CrossRefPubMedGoogle Scholar
  14. Hancock, P. J. B., Burton, A. M., & Bruce, V. (1996). Face processing: Human perception and principal components analysis. Memory & Cognition, 24(1), 26–40. doi:10.3758/bf03197270 CrossRefGoogle Scholar
  15. Harris, A., & Nakayama, K. (2007). Rapid face-selective adaptation of an early extrastriate component in MEG. Cerebral Cortex, 17(1), 63–70. doi:10.1093/cercor/bhj124 CrossRefPubMedGoogle Scholar
  16. Herzmann, G., Schweinberger, S. R., Sommer, W., & Jentzsch, I. (2004). What’s special about personally familiar faces? A multimodal approach. Psychophysiology, 41(5), 688–701. doi:10.1111/j.1469-8986.2004.00196.x CrossRefPubMedGoogle Scholar
  17. Hole, G. J., George, P. A., Eaves, K., & Rasek, A. (2002). Effects of geometric distortions on face-recognition performance. Perception, 31(10), 1221–1240. doi:10.1068/p3252 CrossRefPubMedGoogle Scholar
  18. Huynh, H., & Feldt, L. S. (1976). Estimation of the box correction for degrees of freedom from sample data in randomized block and split-plot designs. Journal of Educational and Beharioral Statistics, 1, 69–82.Google Scholar
  19. Irons, J., McKone, E., Dumbleton, R., Barnes, N., He, X. M., Provis, J., … Kwa, A. (2014). A new theoretical approach to improving face recognition in disorders of central vision: Face caricaturing. Journal of Vision, 14(2). doi:10.1167/14.2.12
  20. Itz, M. L., Schweinberger, S. R., Schulz, C., & Kaufmann, J. M. (2014). Neural correlates of facilitations in face learning by selective caricaturing of facial shape or reflectance. NeuroImage, 102, 736–747. doi:10.1016/j.neuroimage.2014.08.042 CrossRefPubMedGoogle Scholar
  21. Kaufmann, J. M., Schulz, C., & Schweinberger, S. R. (2013). High and low performers differ in the use of shape information for face recognition. Neuropsychologia, 51(7), 1310–1319. doi:10.1016/j.neuropsychologia.2013.03.015 CrossRefPubMedGoogle Scholar
  22. Kaufmann, J. M., & Schweinberger, S. R. (2008). Distortions in the brain? ERP effects of caricaturing familiar and unfamiliar faces. Brain Research, 1228, 177–188. doi:10.1016/j.brainres.2008.06.092 CrossRefPubMedGoogle Scholar
  23. Kaufmann, J. M., & Schweinberger, S. R. (2009). ERP correlates of improved learning for spatially caricatured faces. Psychophysiology, 46, S132–S132.CrossRefGoogle Scholar
  24. Kaufmann, J. M., & Schweinberger, S. R. (2012). The faces you remember: Caricaturing shape facilitates brain processes reflecting the acquisition of new face representations. Biological Psychology, 89(1), 21–33. doi:10.1016/j.biopsycho.2011.08.011 CrossRefPubMedGoogle Scholar
  25. Kaufmann, J. M., Schweinberger, S. R., & Burton, A. M. (2009). N250 ERP correlates of the acquisition of face representations across different images. Journal of Cognitive Neuroscience, 21(4), 625–641. doi:10.1162/jocn.2009.21080 CrossRefPubMedGoogle Scholar
  26. Latinus, M., & Taylor, M. J. (2006). Face processing stages: Impact of difficulty and the separation of effects. Brain Research, 1123, 179–187. doi:10.1016/j.brainres.2006.09.031 CrossRefPubMedGoogle Scholar
  27. Maurer, U., Rossion, B., & McCandliss, B. D. (2008). Category specificity in early perception: Face and word N170 responses differ in both lateralization and habituation properties. Frontiers in Human Neuroscience, 2. doi:10.3389/neuro.09.018.2008
  28. McIntyre, A. H., Hancock, P. J. B., Kittler, J., & Langton, S. R. H. (2013). Improving discrimination and face matching with caricature. Applied Cognitive Psychology, 27(6), 725–734.CrossRefGoogle Scholar
  29. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi:10.1016/0028-3932(71)90067-4 CrossRefPubMedGoogle Scholar
  30. Perkins, D. (1975). A definition of caricature, and caricature and recognition. Studies in the Anthropology of Visual Communication, 2(1), 1–24.CrossRefGoogle Scholar
  31. Rhodes, G. (1996). Superportraits: Caricatures and recognition. Hove, UK: The Psychology Press.CrossRefGoogle Scholar
  32. Rodriguez, J., Bortfeld, H., Rudomin, I., Hernandez, B., & Gutierrez-Osuna, R. (2009). The reverse-caricature effect revisited: Familiarization with frontal facial caricatures improves veridical face recognition. Applied Cognitive Psychology, 23(5), 733–742. doi:10.1002/acp.1539 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Rodriguez, J., & Gutierrez-Osuna, R. (2011). Reverse caricatures effects on three-dimensional facial reconstructions. Image and Vision Computing, 29(5), 329–334. doi:10.1016/j.imavis.2011.01.002 CrossRefGoogle Scholar
  34. Russell, R., & Sinha, P. (2007). Real-world face recognition: The importance of surface reflectance properties. Perception, 36(9), 1368–1374. doi:10.1068/p5779 CrossRefPubMedGoogle Scholar
  35. Schulz, C., Kaufmann, J. M., Kurt, A., & Schweinberger, S. R. (2012). Faces forming traces: Neurophysiological correlates of learning naturally distinctive and caricatured faces. NeuroImage, 63(1), 491–500. doi:10.1016/j.neuroimage.2012.06.080 CrossRefPubMedGoogle Scholar
  36. Schulz, C., Kaufmann, J. M., Walther, L., & Schweinberger, S. R. (2012). Effects of anticaricaturing vs. caricaturing and their neural correlates elucidate a role of shape for face learning. Neuropsychologia, 50(10), 2426–2434. doi:10.1016/j.neuropsychologia.2012.06.013 CrossRefPubMedGoogle Scholar
  37. Schweinberger, S. R. (2011). Neurophysiological correlates of face perception. In A. J. Calder, G. Rhodes, M. Johnson, & J. Haxby (Eds.), Oxford handbook of face perception (pp. 345–366). Oxford, UK: Oxford University Press.Google Scholar
  38. Schweinberger, S. R., & Neumann, M. F. (2016). Repetition effects in human ERPs to faces. Cortex, 80, 141–153. doi:10.1016/j.cortex.2015.11.001 CrossRefPubMedGoogle Scholar
  39. Schweinberger, S. R., Pfutze, E. M., & Sommer, W. (1995). Repetition priming and associative priming of face recognition—Evidence from event-related potentials. Journal of Experimental Psychology-Learning Memory and Cognition, 21(3), 722–736. doi:10.1037//0278-7393.21.3.722 CrossRefGoogle Scholar
  40. Schweinberger, S. R., Pickering, E. C., Jentzsch, I., Burton, A. M., & Kaufmann, J. M. (2002). Event-related brain potential evidence for a response of inferior temporal cortex to familiar face repetitions. Cognitive Brain Research, 14(3), 398–409. doi:10.1016/s0926-6410(02)00142-8 CrossRefPubMedGoogle Scholar
  41. Sommer, W., Heinz, A., Leuthold, H., Matt, J., & Schweinberger, S. R. (1995). Metamemory, distinctiveness, and event-related potentials in recognition memory for faces. Memory & Cognition, 23(1), 1–11. doi:10.3758/bf03210552 CrossRefGoogle Scholar
  42. Stahl, J., Wiese, H., & Schweinberger, S. R. (2008). Expertise and own-race bias in face processing: An event-related potential study. Neuroreport, 19(5), 583–587.CrossRefPubMedGoogle Scholar
  43. Stevenage, S. V. (1995). Can caricatures really produce distinctiveness effects? British Journal of Psychology, 86, 127–146.CrossRefGoogle Scholar
  44. Tanaka, J. W., Curran, T., Porterfield, A. L., & Collins, D. (2006). Activation of preexisting and acquired face representations: The N250 event-related potential as an index of face familiarity. Journal of Cognitive Neuroscience, 18(9), 1488–1497. doi:10.1162/jocn.2006.18.9.1488 CrossRefPubMedGoogle Scholar
  45. Trenner, M. U., Schweinberger, S. R., Jentzsch, I., & Sommer, W. (2004). Face repetition effects in direct and indirect tasks: An event-related brain potentials study. Cognitive Brain Research, 21(3), 388–400.CrossRefPubMedGoogle Scholar
  46. Valentine, T. (1991). A unified account of the effects of distinctiveness, inversion, and race in face recognition. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 43(2), 161–204.CrossRefGoogle Scholar
  47. Valentine, T., & Bruce, V. (1986). Recognizing familiar faces - the role of distinctiveness and familiarity. Canadian Journal of Psychology–Revue Canadienne De Psychologie, 40(3), 300–305. doi:10.1037/h0080101 CrossRefGoogle Scholar
  48. Valentine, T., Lewis, M. B., & Hills, P. J. (2014). Face-space: A unifying concept in face recognition research. The Quarterly Journal of Experimental Psychology. doi:10.1080/17470218.2014.990392 Google Scholar
  49. Vokey, J. R., & Read, J. D. (1992). Familiarity, memorability, and the effect of typicality on the recognition of faces. Memory & Cognition, 20(3), 291–302. doi:10.3758/bf03199666 CrossRefGoogle Scholar
  50. White, D., Kemp, R. I., Jenkins, R., Matheson, M., & Burton, A. M. (2014). Passport officers’ errors in face matching. PLOS ONE, 9(8). doi:10.1371/journal.pone.0103510
  51. Wiese, H., Altmann, C. S., & Schweinberger, S. R. (2014). Effects of attractiveness on face memory separated from distinctiveness: Evidence from event-related brain potentials. Neuropsychologia, 56, 26–36. doi:10.1016/j.neuropsychologia.2013.12.023 CrossRefPubMedGoogle Scholar
  52. Wiese, H., Kaufmann, J. M., & Schweinberger, S. R. (2014). The neural signature of the own-race bias: Evidence from event-related potentials. Cerebral Cortex, 24(3), 826–835. doi:10.1093/cercor/bhs369 CrossRefPubMedGoogle Scholar

Copyright information

© Psychonomic Society, Inc. 2016

Authors and Affiliations

  • Marlena L. Itz
    • 1
  • Stefan R. Schweinberger
    • 1
    • 2
  • Jürgen M. Kaufmann
    • 1
    • 2
  1. 1.Department of General Psychology and Cognitive Neuroscience, Institute of PsychologyFriedrich Schiller University of JenaJenaGermany
  2. 2.DFG Research Unit Person PerceptionFriedrich Schiller University of JenaJenaGermany

Personalised recommendations